CS(布谷鸟搜索)算法MATLAB源码逐行中文注解

2024-09-04 18:32

本文主要是介绍CS(布谷鸟搜索)算法MATLAB源码逐行中文注解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以优化SVM算法的参数c和g为例,对CS算法MATLAB源码进行了逐行中文注解。
完整程序和示例文件地址:http://download.csdn.net/detail/u013337691/9622335
链接:http://pan.baidu.com/s/1sl2BzKL 密码:pkdn

tic % 计时
%% 清空环境导入数据
clear
clc
close all
load wndspd % 示例数据为风速(时间序列)数据,共144个样本
% 训练/测试数据准备(用前3天预测后一天),用前100天做测试数据
train_input(1,:)=wndspd(1:97);
train_input(2,:)=wndspd(2:98);
train_input(3,:)=wndspd(3:99);
train_output=[wndspd(4:100)]';
test_input(1,:)=wndspd(101:end-3);
test_input(2,:)=wndspd(102:end-2);
test_input(3,:)=wndspd(103:end-1);
test_output=[wndspd(104:end)]';[input_train,rule1]=mapminmax(train_input);
[output_train,rule2]=mapminmax(train_output);
input_test=mapminmax('apply',test_input,rule1);
output_test=mapminmax('apply',test_output,rule2);
%% CS-SVR
time=20;
n=20; % n为巢穴数量
pa=0.25; % 被宿主发现的概率
dim = 2; % 需要寻优的参数个数
Lb=[0.01,0.01]; % 设置参数下界
Ub=[100,100]; % 设置参数上界% 随机初始化巢穴
nest=zeros(n,dim);
for i=1:n % 遍历每个巢穴nest(i,:)=Lb+(Ub-Lb).*rand(size(Lb)); % 对每个巢穴,随机初始化参数
endfitness=ones(1,n); % 目标函数值初始化
[fmin,bestnest,nest,fitness]=get_best_nest(nest,nest,fitness,input_train,output_train,input_test,output_test); % 找出当前最佳巢穴和参数%% 迭代开始
for t=1:timenew_nest=get_cuckoos(nest,bestnest,Lb,Ub); % 保留当前最优解,寻找新巢穴[~,~,nest,fitness]=get_best_nest(nest,new_nest,fitness,input_train,output_train,input_test,output_test); % 找出当前最佳巢穴和参数new_nest=empty_nests(nest,Lb,Ub,pa); % 发现并更新劣质巢穴% 找出当前最佳巢穴和参数[fnew,best,nest,fitness]=get_best_nest(nest,new_nest,fitness,input_train,output_train,input_test,output_test); if fnew<fmin,fmin=fnew;bestnest=best ;end
end
%% 打印参数选择结果
bestobjfun=fmin;
bestc=bestnest(1);
bestg=bestnest(2);
disp('打印参数选择结果');
str=sprintf('Best c = %g,Best g = %g',bestc,bestg);
disp(str)
%% 利用回归预测分析最佳的参数进行SVM网络训练
cmd_cs_svr=['-s 3 -t 2',' -c ',num2str(bestnest(1)),' -g ',num2str(bestnest(2))];
model_cs_svr=svmtrain(output_train',input_train',cmd_cs_svr); % SVM模型训练
%% SVM网络回归预测
[output_test_pre,acc]=svmpredict(output_test',input_test',model_cs_svr); % SVM模型预测及其精度
test_pre=mapminmax('reverse',output_test_pre',rule2);
test_pre = test_pre';err_pre=wndspd(104:end)-test_pre;
figure('Name','测试数据残差图')
set(gcf,'unit','centimeters','position',[0.5,5,30,5])
plot(err_pre,'*-');
figure('Name','原始-预测图')
plot(test_pre,'*r-');hold on;plot(wndspd(104:end),'bo-');
legend('预测','原始')
set(gcf,'unit','centimeters','position',[0.5,13,30,5])result=[wndspd(104:end),test_pre];MAE=mymae(wndspd(104:end),test_pre)
MSE=mymse(wndspd(104:end),test_pre)
MAPE=mymape(wndspd(104:end),test_pre)
%% 显示程序运行时间
toc

(广告)欢迎扫描关注微信公众号:Genlovhyy的数据小站(Gnelovy212)
这里写图片描述

这篇关于CS(布谷鸟搜索)算法MATLAB源码逐行中文注解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136694

相关文章

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结