基于深度学习的图像分类优化(FastAI库)

2024-09-04 16:32

本文主要是介绍基于深度学习的图像分类优化(FastAI库),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://github.com/fastai/fastai

 渐进的(图片)尺寸调整

 

当训练CNN模型的时候,从小到大的线性调整图片尺寸是一项技术。渐进的尺寸调整在很赞的fastai课程中被描述为:程序员的深度学习实践。一种不错的方式是先用小的尺寸,如64 x 64进行训练,再用这个模型的参数,在128 x 128尺寸上进行训练,如此以往。每个较大的模型都在其体系结构中包含以前较小的模型层和权重。

  FastAI

fastai库是一个强大的深度学习库。如果fastai团队找到了一篇很感兴趣的论文,他们会在不同的数据集上进行测试,并实现调参。一旦成功,就会被合并到他们的库,并且对它的用户开放阅读。这个库包含了很多内置的先进的技巧。基于pytorch,fastai对于大多数任务都有很好的默认参数。部分技巧包括:

  1. 周期性学习率

  2. 一个周期的学习

  3. 结构化数据的深度学习

  完整的权重初始化

在查看可用的标准数据集时,我偶然发现了Place365数据集。Place365数据集包含365种风景分类的1,800,000张图片。本次挑战赛提供的数据集与这个数据集很相似,所以在这个数据集训练的模型,具有一些学习的特征,与我们分类的问题是相关的。由于我们的问题中的类别是Place365数据集的子集,所以我使用了一个用Place365权重初始化的ResNet50模型。这个模型的权重在“pytorch weights”中提供。下面使用的实用函数帮助我们正确地将数据加载到fastai的CNN学习器中。

  混合增强

混合增强是一种通过对已有的两幅图像进行加权线性插值,来形成新图像的增强方法。我们取两张图像,然后使用这些图像的张量进行线性组合。

λ是服从beta分布的随机采样。虽然论文的作者建议使用 λ=0.4,但是fastai的库默认值设为0.1。

  学习率调优

学习率是训练神经网络中最重要的超参数之一。fastai有一种方法来找出合适的初始学习速率。这个技术被称作循环学习率,我们用较低的学习率进行试验,并以指数形式增加,记录整个过程的损失。然后我们根据学习率绘制损失曲线,并选择损失值最陡峭处的学习率。

这个库还为我们自动的处理带有重新启动的随机梯度下降(SGDR)。在SGDR中,学习率在每次迭代开始时会重新设置为原始选择的数值,这些数值会随着迭代减小,就像余弦退火一样。这么做的主要收益是,由于学习率在每次迭代的开始可以重置,因此学习器能够跳出局部极小值或鞍点。

 

  通用对抗网络

生成式对抗网络(GAN是Generative Adversarial Networks的缩写)在2014年被Ian Goodfellow提出,GANs是由两个网络组成的深层神经网络结构,它们相互竞争。 GANs可以模拟任何数据分布。他们可以学习生成类似原始数据的数据,而且可以是任何领域——图像、语音、文本等等。我们使用fastai的Wasserstein GAN的实现来生成更多的训练数据。

GANs包括训练两个神经网络,一个被称为生成器,它生成新的数据实例,另一个被称为判别器,它对它们进行真实性评估,它决定每个数据实例是否属于实际的训练数据集。你可以从这个链接查阅更多。

  去除混淆的图像

训练神经网络的第一步不是写任何的神经网络的代码,而是彻底观察你的数据。这一步至关重要。我喜欢花费大量的时间(以小时为单位)浏览数千张样例,理解他们的分布,寻找他们的模式。——Andrej Karpathy

正如Andrej Karpathy所说,“数据调查”是一个重要的一步。关于数据调查,我发现很多数据包含不少于两种的类别。

方法-1

使用之前训练的模型,我对整个训练数据进行了预测。然后丢弃概率得分超过0.9但是预测错误的图像。

 

方法 2

fast.ai提供了一个方便的插件“图像清理器插件”,它允许你为自己的模型清理和准备数据。图像清理器可以清洗不属于你数据集的图像。它在一行中呈现图像,使你有机会在文件系统中删除文件。

 

  测试时间增加

测试时间的增加包括提供原始图像的一系列不同的版本,并把他们传递到模型中。从不同的版本中计算出平均值,并给出图像的最终输出。

 

fast.ai中测试时间的增加

之前提出的10-crop技巧跟此技巧类似。我首先在残差网络的论文中读到了10-crop技巧。10-crop技巧包括沿着四角和中心点各裁剪一次,得到五张图像。反向重复以上操作,得到另外五张图像,一共十张。测试时间增加的方法无论如何比10-crop技巧要快。

  集成

        机器学习中的集成是一种使用多种学习算法的技术,这种技术可以获得比单一算法更好的预测性能。集成学习最好在下面的条件下工作:

  1. 组成模型具有不同的性质。比如,集成ResNet50和InceptionNet要比组合ResNet50和InceptionNet有用的多,因为它们本质上是不同的。

  2. 组成模型的相关性较低。

  3. 改变模型的训练集,能得到更多的变化。

 

  结论

  1. 渐进的尺寸调整在开始时是一个好主意。

  2. 花时间去理解你的数据并且可视化是必须的。

  3. 像fastai这种具有出色的初始化参数的出色的深度学习库,确实有帮助。

  4. 只要有可能,就要尽量使用迁移学习,因为确实有用。最近,深度学习和迁移学习已经应用到了结构化数据,所以迁移学习绝对应该是首先要尝试的事情。

  5. 最先进的技术例如混合增强,测试时间增加,周期学习率将毫无疑问的帮助你将准确率提高1到2个百分点。

  6. 始终搜索与你的问题相关的数据集,并且把他们尽可能的用在你的训练数据集中。如果可能,深度学习模型在这些模型上训练之后,使用他们的参数作为你模型的初始权重。

这篇关于基于深度学习的图像分类优化(FastAI库)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136439

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据