基于tesseract实现文档OCR识别

2024-09-04 13:36

本文主要是介绍基于tesseract实现文档OCR识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入环境

导入必要的库
numpy: 用于处理数值计算。
argparse: 用于处理命令行参数。
cv2: OpenCV库,用于图像处理。

import numpy as np
import argparse
import cv2

设置命令行参数

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/page.jpg", help="Path to the image to be scanned")
args = vars(ap.parse_args())

定义坐标排序函数

对四个坐标点进行排序,确定文档的四个角(左上,右上,右下,左下)。
使用欧氏距离来计算和排序点。

def order_points(pts):# 一共4个坐标点rect = np.zeros((4, 2), dtype = "float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下s = pts.sum(axis = 1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]# 计算右上和左下diff = np.diff(pts, axis = 1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect
  • 此函数用于排序提供的四个点,确保点的顺序为左上、右上、右下和左下,这对后续的透视变换非常重要。

定义透视变换函数

使用cv2.getPerspectiveTransform和cv2.warpPerspective来计算变换矩阵并应用

def four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32")# 计算变换矩阵M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))# 返回变换后结果return warped
  • 接收原始图像和四个顶点坐标,然后应用透视变换,从而获取图像的正视图。

定义图像缩放函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):dim = None(h, w) = image.shape[:2]if width is None and height is None:return imageif width is None:r = height / float(h)dim = (int(w * r), height)else:r = width / float(w)dim = (width, int(h * r))resized = cv2.resize(image, dim, interpolation=inter)return resized
  • 用于调整图像尺寸,使图像处理过程中的操作更加高效。

主逻辑部分

  • 图像预处理:

    • 读取图像,调整大小,并转换为灰度图。
    • 应用高斯模糊和Canny边缘检测准备图像进行轮廓检测。
  • 轮廓检测:

    • 使用cv2.findContours寻找边缘,这是寻找文档轮廓的关键步骤。
    • 选择轮廓面积最大的前五个轮廓。
  • 透视变换:

    • 对检测到的轮廓(如果准确地检测到四点)应用透视变换。
    • 将图像从斜视角转换为正视图,便于文档的进一步处理和分析。
  • 结果保存和显示:

    • 应用二值化处理,并保存变换后的扫描图像。
    • 显示原始和扫描后的图像。

关键知识点

  • 高斯模糊 (GaussianBlur): 用于去除图像噪声并平滑图像。
  • Canny边缘检测 (Canny): 用于在图像中检测边缘,是轮廓检测的关键步骤。
  • 轮廓检测 (findContours): 在二值图像中寻找轮廓,用于图形、图像和物体的形状分析。
  • 透视变换 (getPerspectiveTransform, warpPerspective): 在进行文档扫描或修正图像视角时非常有用。
if __name__ == '__main__':# 读取输入image = cv2.imread(args["image"])#坐标也会相同变化ratio = image.shape[0] / 500.0orig = image.copy()image = resize(orig, height = 500)# 预处理gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(gray, 75, 200)# 展示预处理结果print("STEP 1: 边缘检测")cv2.imshow("Image", image)cv2.imshow("Edged", edged)cv2.waitKey(0)cv2.destroyAllWindows()# 轮廓检测 opencv3# cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[1][0]# cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]# 使用OpenCV 4.x的方式来调用findContourscontours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)# 确保轮廓是适当的数据类型cnts = [np.array(cnt, dtype='float32') for cnt in contours]# 排序并选择最大的5个轮廓cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]# 遍历轮廓screenCnt  =  Nonefor c in cnts:# 计算轮廓近似peri = cv2.arcLength(c, True)# C表示输入的点集# epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数# True表示封闭的approx = cv2.approxPolyDP(c, 0.02 * peri, True)# 4个点的时候就拿出来if len(approx) == 4:screenCnt = approx.astype(int)breakif screenCnt is not None:# 展示结果print("STEP 2: 获取轮廓")# print(screenCnt)cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)cv2.imshow("Outline", image)cv2.waitKey(0)cv2.destroyAllWindows()# 透视变换warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)# 二值处理warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]cv2.imwrite('scan.jpg', ref)# 展示结果print("STEP 3: 变换")cv2.imshow("Original", resize(orig, height = 650))cv2.imshow("Scanned", resize(ref, height = 650))cv2.waitKey(0)
  • Canny算子检测结果图:
    在这里插入图片描述

  • 定 四个顶点
    在这里插入图片描述

  • 仿射变换结果

  • 在这里插入图片描述

OCR识别

Tesseract 是一个开源的光学字符识别(OCR)引擎,最初由惠普实验室于1985年开发,并在2006年由Google赞助成为一个开源项目。Tesseract 能够识别多种格式的图像文件并将它们转换成文本。它支持多种语言的识别,并且可以通过训练来识别新的语言或优化现有语言的识别效果。

主要特点:

  1. 多语言支持:Tesseract 支持100多种语言的识别。
  2. 高度可定制:用户可以训练Tesseract来识别新的字体或优化特定语言的识别。
  3. 多种输出格式:Tesseract 可以输出普通文本、hOCR(带有布局信息的HTML)、PDF等格式。
  4. 集成易用:可以通过命令行使用,也可通过其API集成到其他应用程序中,比如通过pytesseract在Python中使用。

使用方法:

在命令行中,Tesseract 可以简单地通过指定输入图像和输出文件名来使用,如:

tesseract image.png output -l eng

这里-l eng指定了使用英语语言包。

pytesseract:

在Python中,pytesseract是一个将Tesseract引擎功能封装的库,允许Python直接调用Tesseract进行图像到文本的转换。使用前需要确保Tesseract已安装在系统上,并且正确配置了环境变量或在pytesseracttesseract_cmd属性中指定了Tesseract的路径。

应用场景:

  • 文档数字化:将纸质文档扫描后识别为数字文本。
  • 自动化表单处理:从填写的表单中提取信息。
  • 车牌识别:用于交通监控或自动收费系统。
  • 辅助技术:帮助视觉障碍人士阅读印刷材料。

Tesseract是一个功能强大的工具,因其开源和高效被广泛用于商业和研究领域。

1. 导入必要的库

  • PIL (Python Imaging Library): 用于图像的打开和处理。
  • pytesseract: 是Google的Tesseract-OCR引擎的Python封装,用于识别图像中的文字。
  • cv2 (OpenCV): 用于图像处理的库,这里用于读取和预处理图像。
from PIL import Image
import pytesseract
import cv2
import os

2. 图像预处理

  • 读取图像: 使用cv2.imread读取图像文件。
  • 转换为灰度图: 使用cv2.cvtColor将读取的彩色图像转换为灰度图,因为OCR通常在灰度图上进行。
  • 应用阈值或模糊处理:
    • 如果预处理方式为"thresh"(阈值),使用cv2.threshold应用阈值化处理,这可以帮助去除背景噪声并突出文本。
    • 如果预处理方式为"blur"(模糊),使用cv2.medianBlur应用中值模糊,以减少图像噪声。
preprocess = 'blur' #threshimage = cv2.imread('scan.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)if preprocess == "thresh":gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]if preprocess == "blur":gray = cv2.medianBlur(gray, 3)

3. 保存处理后的图像

  • 保存文件: 使用cv2.imwrite将处理后的灰度图像临时保存为一个新文件,文件名由当前进程ID命名。

4. 文本识别

  • 使用pytesseract.image_to_string函数读取步骤3中保存的灰度图像文件,识别其中的文本。
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, gray)text = pytesseract.image_to_string(Image.open(filename))
print(text)
os.remove(filename)cv2.imshow("Image", image)
cv2.imshow("Output", gray)
cv2.waitKey(0)                                   

5. 输出和清理

  • 打印识别的文本
  • 删除临时文件: 使用os.remove删除保存的临时图像文件。
  • 显示图像: 使用cv2.imshow展示原始图像和处理后的图像。
  • 等待按键: 使用cv2.waitKey(0)暂停程序,等待用户按键继续。

知识点总结

  • OpenCV的灰度转换和图像滤波:灰度转换有助于简化数据,滤波有助于减少噪声,这两者都是提高OCR准确性的关键步骤。
  • 阈值处理与模糊处理的选择:不同的图像预处理方法适用于不同类型的图像和需求,阈值处理适用于高对比度图像,而模糊处理适用于噪声较多的图像。
  • pytesseract的使用:封装了Tesseract-OCR引擎,能够从图像中识别和提取文字。

通过仿射变换矫正后图像为:

在这里插入图片描述

识别结果为:
在这里插入图片描述

源码上传地址

链接 ----------------上传地址 文档OCR识别(tesseract)

这篇关于基于tesseract实现文档OCR识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136159

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J