基于tesseract实现文档OCR识别

2024-09-04 13:36

本文主要是介绍基于tesseract实现文档OCR识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入环境

导入必要的库
numpy: 用于处理数值计算。
argparse: 用于处理命令行参数。
cv2: OpenCV库,用于图像处理。

import numpy as np
import argparse
import cv2

设置命令行参数

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/page.jpg", help="Path to the image to be scanned")
args = vars(ap.parse_args())

定义坐标排序函数

对四个坐标点进行排序,确定文档的四个角(左上,右上,右下,左下)。
使用欧氏距离来计算和排序点。

def order_points(pts):# 一共4个坐标点rect = np.zeros((4, 2), dtype = "float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下s = pts.sum(axis = 1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]# 计算右上和左下diff = np.diff(pts, axis = 1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect
  • 此函数用于排序提供的四个点,确保点的顺序为左上、右上、右下和左下,这对后续的透视变换非常重要。

定义透视变换函数

使用cv2.getPerspectiveTransform和cv2.warpPerspective来计算变换矩阵并应用

def four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32")# 计算变换矩阵M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))# 返回变换后结果return warped
  • 接收原始图像和四个顶点坐标,然后应用透视变换,从而获取图像的正视图。

定义图像缩放函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):dim = None(h, w) = image.shape[:2]if width is None and height is None:return imageif width is None:r = height / float(h)dim = (int(w * r), height)else:r = width / float(w)dim = (width, int(h * r))resized = cv2.resize(image, dim, interpolation=inter)return resized
  • 用于调整图像尺寸,使图像处理过程中的操作更加高效。

主逻辑部分

  • 图像预处理:

    • 读取图像,调整大小,并转换为灰度图。
    • 应用高斯模糊和Canny边缘检测准备图像进行轮廓检测。
  • 轮廓检测:

    • 使用cv2.findContours寻找边缘,这是寻找文档轮廓的关键步骤。
    • 选择轮廓面积最大的前五个轮廓。
  • 透视变换:

    • 对检测到的轮廓(如果准确地检测到四点)应用透视变换。
    • 将图像从斜视角转换为正视图,便于文档的进一步处理和分析。
  • 结果保存和显示:

    • 应用二值化处理,并保存变换后的扫描图像。
    • 显示原始和扫描后的图像。

关键知识点

  • 高斯模糊 (GaussianBlur): 用于去除图像噪声并平滑图像。
  • Canny边缘检测 (Canny): 用于在图像中检测边缘,是轮廓检测的关键步骤。
  • 轮廓检测 (findContours): 在二值图像中寻找轮廓,用于图形、图像和物体的形状分析。
  • 透视变换 (getPerspectiveTransform, warpPerspective): 在进行文档扫描或修正图像视角时非常有用。
if __name__ == '__main__':# 读取输入image = cv2.imread(args["image"])#坐标也会相同变化ratio = image.shape[0] / 500.0orig = image.copy()image = resize(orig, height = 500)# 预处理gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(gray, 75, 200)# 展示预处理结果print("STEP 1: 边缘检测")cv2.imshow("Image", image)cv2.imshow("Edged", edged)cv2.waitKey(0)cv2.destroyAllWindows()# 轮廓检测 opencv3# cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[1][0]# cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]# 使用OpenCV 4.x的方式来调用findContourscontours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)# 确保轮廓是适当的数据类型cnts = [np.array(cnt, dtype='float32') for cnt in contours]# 排序并选择最大的5个轮廓cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]# 遍历轮廓screenCnt  =  Nonefor c in cnts:# 计算轮廓近似peri = cv2.arcLength(c, True)# C表示输入的点集# epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数# True表示封闭的approx = cv2.approxPolyDP(c, 0.02 * peri, True)# 4个点的时候就拿出来if len(approx) == 4:screenCnt = approx.astype(int)breakif screenCnt is not None:# 展示结果print("STEP 2: 获取轮廓")# print(screenCnt)cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)cv2.imshow("Outline", image)cv2.waitKey(0)cv2.destroyAllWindows()# 透视变换warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)# 二值处理warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]cv2.imwrite('scan.jpg', ref)# 展示结果print("STEP 3: 变换")cv2.imshow("Original", resize(orig, height = 650))cv2.imshow("Scanned", resize(ref, height = 650))cv2.waitKey(0)
  • Canny算子检测结果图:
    在这里插入图片描述

  • 定 四个顶点
    在这里插入图片描述

  • 仿射变换结果

  • 在这里插入图片描述

OCR识别

Tesseract 是一个开源的光学字符识别(OCR)引擎,最初由惠普实验室于1985年开发,并在2006年由Google赞助成为一个开源项目。Tesseract 能够识别多种格式的图像文件并将它们转换成文本。它支持多种语言的识别,并且可以通过训练来识别新的语言或优化现有语言的识别效果。

主要特点:

  1. 多语言支持:Tesseract 支持100多种语言的识别。
  2. 高度可定制:用户可以训练Tesseract来识别新的字体或优化特定语言的识别。
  3. 多种输出格式:Tesseract 可以输出普通文本、hOCR(带有布局信息的HTML)、PDF等格式。
  4. 集成易用:可以通过命令行使用,也可通过其API集成到其他应用程序中,比如通过pytesseract在Python中使用。

使用方法:

在命令行中,Tesseract 可以简单地通过指定输入图像和输出文件名来使用,如:

tesseract image.png output -l eng

这里-l eng指定了使用英语语言包。

pytesseract:

在Python中,pytesseract是一个将Tesseract引擎功能封装的库,允许Python直接调用Tesseract进行图像到文本的转换。使用前需要确保Tesseract已安装在系统上,并且正确配置了环境变量或在pytesseracttesseract_cmd属性中指定了Tesseract的路径。

应用场景:

  • 文档数字化:将纸质文档扫描后识别为数字文本。
  • 自动化表单处理:从填写的表单中提取信息。
  • 车牌识别:用于交通监控或自动收费系统。
  • 辅助技术:帮助视觉障碍人士阅读印刷材料。

Tesseract是一个功能强大的工具,因其开源和高效被广泛用于商业和研究领域。

1. 导入必要的库

  • PIL (Python Imaging Library): 用于图像的打开和处理。
  • pytesseract: 是Google的Tesseract-OCR引擎的Python封装,用于识别图像中的文字。
  • cv2 (OpenCV): 用于图像处理的库,这里用于读取和预处理图像。
from PIL import Image
import pytesseract
import cv2
import os

2. 图像预处理

  • 读取图像: 使用cv2.imread读取图像文件。
  • 转换为灰度图: 使用cv2.cvtColor将读取的彩色图像转换为灰度图,因为OCR通常在灰度图上进行。
  • 应用阈值或模糊处理:
    • 如果预处理方式为"thresh"(阈值),使用cv2.threshold应用阈值化处理,这可以帮助去除背景噪声并突出文本。
    • 如果预处理方式为"blur"(模糊),使用cv2.medianBlur应用中值模糊,以减少图像噪声。
preprocess = 'blur' #threshimage = cv2.imread('scan.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)if preprocess == "thresh":gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]if preprocess == "blur":gray = cv2.medianBlur(gray, 3)

3. 保存处理后的图像

  • 保存文件: 使用cv2.imwrite将处理后的灰度图像临时保存为一个新文件,文件名由当前进程ID命名。

4. 文本识别

  • 使用pytesseract.image_to_string函数读取步骤3中保存的灰度图像文件,识别其中的文本。
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, gray)text = pytesseract.image_to_string(Image.open(filename))
print(text)
os.remove(filename)cv2.imshow("Image", image)
cv2.imshow("Output", gray)
cv2.waitKey(0)                                   

5. 输出和清理

  • 打印识别的文本
  • 删除临时文件: 使用os.remove删除保存的临时图像文件。
  • 显示图像: 使用cv2.imshow展示原始图像和处理后的图像。
  • 等待按键: 使用cv2.waitKey(0)暂停程序,等待用户按键继续。

知识点总结

  • OpenCV的灰度转换和图像滤波:灰度转换有助于简化数据,滤波有助于减少噪声,这两者都是提高OCR准确性的关键步骤。
  • 阈值处理与模糊处理的选择:不同的图像预处理方法适用于不同类型的图像和需求,阈值处理适用于高对比度图像,而模糊处理适用于噪声较多的图像。
  • pytesseract的使用:封装了Tesseract-OCR引擎,能够从图像中识别和提取文字。

通过仿射变换矫正后图像为:

在这里插入图片描述

识别结果为:
在这里插入图片描述

源码上传地址

链接 ----------------上传地址 文档OCR识别(tesseract)

这篇关于基于tesseract实现文档OCR识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1136159

相关文章

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

linux批量替换文件内容的实现方式

《linux批量替换文件内容的实现方式》本文总结了Linux中批量替换文件内容的几种方法,包括使用sed替换文件夹内所有文件、单个文件内容及逐行字符串,强调使用反引号和绝对路径,并分享个人经验供参考... 目录一、linux批量替换文件内容 二、替换文件内所有匹配的字符串 三、替换每一行中全部str1为st

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5