深入探索 Go 语言的编译器与垃圾回收机制

2024-09-04 12:44

本文主要是介绍深入探索 Go 语言的编译器与垃圾回收机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Go 编译器

Go 编译器是通过 go 工具执行的,这个工具的功能不仅仅是生成可执行文件。你可以使用 go tool compile 命令来编译一个 Go 源文件。这个操作将生成一个目标文件,也就是 .o 后缀的文件。以下是在 macOS Mojave 系统上执行的命令和结果展示:

$ go tool compile unsafe.go
$ ls -l unsafe.o
-rw-r--r--  1 mtsouk  staff  6926 Jan 22 21:39 unsafe.o
$ file unsafe.o
unsafe.o: current ar archive

目标文件是一种包含机器代码的文件,通常是不可直接执行的。它的一个主要优势在于在链接阶段所需的内存更少。如果你使用 -pack 命令行参数,go tool compile 会生成一个归档文件,而不是目标文件:

$ go tool compile -pack unsafe.go
$ ls -l unsafe.a
-rw-r--r--  1 mtsouk  staff  6926 Jan 22 21:40 unsafe.a
$ file unsafe.a
unsafe.a: current ar archive

归档文件是一种二进制文件,包含一个或多个文件,主要用于将多个文件合并为一个文件。ar 是其中一种格式,Go 使用的就是这种格式。这个示例中的 unsafe.go 文件不包含任何特殊代码,以上的命令适用于任何有效的 Go 源文件。

查看归档文件内容

你可以使用以下命令查看 .a 归档文件的内容:

$ ar t unsafe.a
__.PKGDEF
_go_.o

-race 标志

另一个值得一提的 go tool compile 命令行参数是 -race,它可以检测竞态条件。在并发编程中,竞态条件可能导致意想不到的错误。你可以通过以下命令生成汇编语言的输出:

$ go tool compile -S unsafe.go

这个命令会生成大量的输出,虽然它难以理解,但这意味着 Go 编译器很好地隐藏了复杂性,除非你主动要求查看这些细节。

垃圾回收

垃圾回收(GC)是释放未被使用的内存空间的过程,换句话说,GC 会找到那些已经超出作用范围且无法再被引用的对象,并释放它们占用的内存空间。这个过程是在 Go 程序运行时以并发方式执行的,而不是在程序执行前或执行后才开始。Go 垃圾回收的官方文档中提到:

“GC 与变更线程并发运行,精确类型化(也称为精确),允许多个 GC 线程并行运行。它是并发标记-清除,使用写屏障,非代际且非压缩。分配采用大小分离的每 P 分配区,以最小化碎片化,同时在常见情况下消除锁。”

其中涉及到许多术语,接下来我们会逐一解释。首先,我会展示一个查看垃圾回收过程参数的方法。

使用标准库查看垃圾回收参数

幸运的是,Go 标准库提供了一些函数,可以帮助我们了解垃圾回收的运行方式。下面的代码展示了如何获取垃圾回收的相关信息:

package mainimport ("fmt""runtime""time"
)func printStats(mem runtime.MemStats) {runtime.ReadMemStats(&mem)fmt.Println("当前内存分配:", mem.Alloc)fmt.Println("内存总分配:", mem.TotalAlloc)fmt.Println("堆内存分配:", mem.HeapAlloc)fmt.Println("垃圾回收次数:", mem.NumGC)fmt.Println("-----")
}

每当你需要获取最新的垃圾回收统计信息时,你需要调用 runtime.ReadMemStats() 函数。printStats() 函数用于打印这些信息,以避免重复编写相同的代码。

接下来的部分创建了大量的 Go 切片,以分配大量内存并触发垃圾回收:

func main() {var mem runtime.MemStatsprintStats(mem)for i := 0; i < 10; i++ {s := make([]byte, 50000000)if s == nil {fmt.Println("操作失败!")}printStats(mem)}
}

最后一部分代码做了更多的内存分配操作:

for i := 0; i < 10; i++ {s := make([]byte, 100000000)if s == nil {fmt.Println("操作失败!")}time.Sleep(5 * time.Second)
}
printStats(mem)

运行上述代码的输出如下(以 macOS Mojave 为例):

$ go run gColl.go
当前内存分配: 66024
内存总分配: 66024
堆内存分配: 66024
垃圾回收次数: 0
-----
当前内存分配: 50078496
内存总分配: 500117056
堆内存分配: 50078496
垃圾回收次数: 10
-----
当前内存分配: 76712
内存总分配: 1500199904
堆内存分配: 76712
垃圾回收次数: 20
-----

深入理解垃圾回收

观察垃圾回收的行为能够帮助你在性能较慢的应用中发现问题。你可以通过以下命令查看更详细的 GC 信息:

$ GODEBUG=gctrace=1 go run gColl.go

输出会显示每次垃圾回收的详细数据。例如:

gc 4 @0.025s 0%: 0.002+0.065+0.018 ms clock, 47->47->0 MB, 48 MB goal

三色标记-清除算法

Go 的垃圾回收基于三色标记-清除算法。这个算法将堆中的对象分为三类:白色、灰色和黑色。白色对象是垃圾回收的候选对象,而灰色对象可能指向白色对象,黑色对象则不会指向白色对象。

当垃圾回收开始时,所有对象最初是白色的,垃圾回收器会将根对象标记为灰色,并继续扫描灰色对象。如果灰色对象指向白色对象,它会将这些白色对象标记为灰色,最终所有不可达的白色对象会被回收。

在程序运行过程中,如果某个对象变得可达,写屏障机制会将其重新标记为灰色,确保其不会被错误回收。

这个三色标记-清除算法不仅适用于 Go,还可以应用于其他编程语言。

这篇关于深入探索 Go 语言的编译器与垃圾回收机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1136062

相关文章

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

go rate 原生标准限速库的使用

《gorate原生标准限速库的使用》本文主要介绍了Go标准库golang.org/x/time/rate实现限流,采用令牌桶算法控制请求速率,提供Allow/Reserve/Wait方法,具有一定... 目录介绍安装API介绍rate.NewLimiter:创建限流器limiter.Allow():请求是否

Go 语言中的 Struct Tag 的用法详解

《Go语言中的StructTag的用法详解》在Go语言中,结构体字段标签(StructTag)是一种用于给字段添加元信息(metadata)的机制,常用于序列化(如JSON、XML)、ORM映... 目录一、结构体标签的基本语法二、json:"token"的具体含义三、常见的标签格式变体四、使用示例五、使用

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Java 的 Condition 接口与等待通知机制详解

《Java的Condition接口与等待通知机制详解》在Java并发编程里,实现线程间的协作与同步是极为关键的任务,本文将深入探究Condition接口及其背后的等待通知机制,感兴趣的朋友一起看... 目录一、引言二、Condition 接口概述2.1 基本概念2.2 与 Object 类等待通知方法的区别

Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题

《Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题》:本文主要介绍Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录一、前言二、系统架构检测三、卸载旧版 Go四、下载并安装正确版本五、配置环境变量六、验证安装七、常见

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

如何合理管控Java语言的异常

《如何合理管控Java语言的异常》:本文主要介绍如何合理管控Java语言的异常问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、Thorwable类3、Error4、Exception类4.1、检查异常4.2、运行时异常5、处理方式5.1. 捕获异常