numpy、scipy、pandas、matplotlib了解

2024-09-04 07:38

本文主要是介绍numpy、scipy、pandas、matplotlib了解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.numpy——基础,以矩阵为基础的数学计算模块,纯数学
存储和处理大型矩阵。
这个是很基础的扩展,其余的扩展都是以此为基础。
快速学习入口 https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

2.pandas——数据分析
基于NumPy 的一种工具,为了解决数据分析任务而创建的。
Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。
最具有统计意味的工具包,某些方面优于R软件。
数据结构有一维的Series,二维的DataFrame(类似于Excel或者SQL中的表,如果深入学习,会发现Pandas和SQL相似的地方很多,例如merge函数),
三维的Panel
(Pan(el) + da(ta) + s,知道名字的由来了吧)。
学习pandas要掌握:
汇总和计算描述统计,处理缺失数据 ,层次化索引
清理、转换、合并、重塑、GroupBy技术
日期和时间数据类型及工具(日期处理方便地飞起)。
http://pandas.pydata.org/pandas-docs/stable/10min.html

3.matplotlib——绘图,不推荐使用,不如用seaborn
python中最著名的绘图系统.很多其他的绘图例如seaborn(针对pandas绘图而来)也是由其封装而成。
这个绘图系统操作起来很复杂,和R的ggplot,lattice绘图相比显得望而却步,这也是为什么我个人不丢弃R的原因.
但是matplotlib的复杂给其带来了很强的定制性。其具有面向对象的方式及Pyplot的经典高层封装。
需要掌握的是:
散点图,折线图,条形图,直方图,饼状图,箱形图的绘制。
绘图的三大系统:pyplot,pylab(不推荐),面向对象
坐标轴的调整,添加文字注释,区域填充,及特殊图形patches的使用
金融的同学注意的是:可以直接调用Yahoo财经数据绘图.
http://matplotlib.org/users/pyplot_tutorial.html

4.scipy——数值计算库
在NumPy库的基础上增加了众多的数学、科学以及工程计算中常用的库函数。
方便、易于使用、专为科学和工程设计的Python工具包.
它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。

5.Python numpy,scipy,pandas这些库的区别
Numpy是以矩阵为基础的数学计算模块,纯数学。
Scipy基于Numpy,科学计算库,有一些高阶抽象和物理模型。比方说做个傅立叶变换,这是纯数学的,用Numpy;做个滤波器,这属于信号处理模型了,在Scipy里找。
Pandas提供了一套名为DataFrame的数据结构,比较契合统计分析中的表结构,并且提供了计算接口,可用Numpy或其它方式进行计算。

这篇关于numpy、scipy、pandas、matplotlib了解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135403

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失