【Datawhale X 李宏毅苹果书 AI夏令营】《深度学习详解》Task3 打卡

本文主要是介绍【Datawhale X 李宏毅苹果书 AI夏令营】《深度学习详解》Task3 打卡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 学习目标
  • 一、优化策略
  • 二、模型偏差
  • 三、优化问题
  • 三、过拟合
    • 增加训练集
    • 给模型一些限制
  • 四、交叉验证
  • 五、不匹配
  • 总结


前言

本文是【Datawhale X 李宏毅苹果书 AI夏令营】的Task3学习笔记打卡。

学习目标

李宏毅老师对应视频课程:https://www.bilibili.com/video/BV1JA411c7VT?p=4
《深度学习详解》第二章主要介绍了训练模型时的优化方法。


一、优化策略

完成的作业如果在 Kaggle 上的结果不太好,虽然 Kaggle 上呈现的是测试数据的结果,但要先检查训练数据的损失。
看看模型在训练数据上面,有没有学起来,再去看测试的结果。

Kaggle 是一个全球知名的数据科学和机器学习竞赛平台,同时也是一个数据科学社区。它提供了各种与数据科学相关的资源,包括竞赛、数据集、代码共享、讨论论坛和学习资源。

在这里插入图片描述

二、模型偏差

模型偏差可能会影响模型训练,所以如果模型的灵活性不够大,可以增加更多特征,可以设一个更大的模型,可以用深度学习来增加模型的灵活性,这是第一个可以的解法。

在这里插入图片描述

三、优化问题

但是并不是训练的时候,损失大就代表一定是模型偏差,可能会遇到另外一个问题:优化做得不好。

在这里插入图片描述

一个建议判断模型偏差或者优化问题的方法,通过比较不同的模型来判断模型现在到底够不够大。

在这里插入图片描述

并不是所有的结果不好,都叫做过拟合。
在训练集上,20 层的网络损失其实是比较低的,56 层的网络损失是比较高的,如图 2.4(b) 所示,这代表 56 层的网络的优化没有做好,它的优化不给力。

在这里插入图片描述

这边给大家的建议是看到一个从来没有做过的问题,可以先跑一些比较小的、比较浅的网络,或甚至用一些非深度学习的方法,比如线性模型、支持向量机(Support Vector Machine,SVM),SVM 可能是比较容易做优化的,它们比较不会有优化失败的问题。

在这里插入图片描述

三、过拟合

为什么会有过拟合这样的情况呢?

如果模型它的自由度很大的话,它可以产生非常奇怪的曲线,导致训练集上的结果好,但是测试集上的损失很大。

在这里插入图片描述

怎么解决过拟合的问题呢,有两个可能的方向:

增加训练集

可以做数据增强(data augmentation,),这个方法并不算是使用了额外的数据。

在这里插入图片描述

给模型一些限制

全连接网络(fully-connected network)其实是一个比较有灵活性的架构,而卷积神经网络(Convolutional Neural Network,CNN)是一个比较有限制的架构。

在这里插入图片描述

  • 给模型比较少的参数。如果是深度学习的话,就给它比较少的神经元的数量。

  • 或者用比较少的特征,本来给 3 天的数据,改成用给两天的数据,其实结果就好了一些。

  • 还有别的方法,比如早停(early stopping)、正则化(regularization)和丢弃法(dropoutmethod)。

在这里插入图片描述

随着模型越来越复杂,训练损失可以越来越低,但测试时,当模型越来越复杂的时候,刚开始,测试损失会跟著下降,但是当复杂的程度,超过某一个程度以后,测试损失就会突然暴增了。

在这里插入图片描述

可以选一个中庸的模型,不是太复杂的,也不是太简单的,刚刚好可以在训练集上损失最低,测试损失最低。

四、交叉验证

比较合理选择模型的方法是把训练的数据分成两半,一部分称为训练集(training set),一部分是验证集(validation set)。

其实最好的做法,就是用验证损失,最小的直接挑就好了,不要管公开测试集的结果。在实现上,不太可能这么做,因为公开数据集的结果对模型的选择,可能还是会有些影响的。
理想上就用验证集挑就好,有过比较好的基线(baseline)算法以后,就不要再去动它了,就可以避免在测试集上面过拟合。

在这里插入图片描述

五、不匹配

真实曲线与预测曲线之间出现反常情况,这种错误的形式称为不匹配。

在这里插入图片描述

不匹配跟过拟合其实不同,一般的过拟合可以用搜集更多的数据来克服,但是不匹配是指训练集跟测试集的分布不同,训练集再增加其实也没有帮助了。

在这里插入图片描述


总结

《深度学习详解》的前两章到此就顺利看完了,本质上是对李宏毅老师《机器学习》课程的一个口语化文字记录,非常通俗易懂,后面还有更加有意思的内容。

这篇关于【Datawhale X 李宏毅苹果书 AI夏令营】《深度学习详解》Task3 打卡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134837

相关文章

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定