鹏程万里------TI 28004开发

2024-09-04 00:38

本文主要是介绍鹏程万里------TI 28004开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 大丈夫能伸能屈。。。。。

1.gpio的功能定义在page875页

其实挺简单,就是前面加后面组成一个数字表明是第几个功能,比如如果要搞成canb_tx,那么就是0110换成10进制就是功能6,这个例子用在前一页的那些功能定义种。

 

2.In a typical application, the SPISTE pin serves as a chip-enable pin for a slave SPI device. This pin is
driven low by the master before transmitting data to the slave and is taken high after the transmission is
complete.这段话在page2052页,看起来似乎spi 会自动管控这个管教,只要定义成spi ste

 

3.下图是开发板的仿真器设置

先选basic的再选advance的

 

 

 

 

3.烧录程序:

烧录文件如下:

然后打开编译软件导入工程如下

点击load下载先,这是副cpu里的程序

然后

在右边

右键点击launchXXXXXXX

然后

选中c28xx右键connectXXXX

然后

然后点击load等待

选中那个out文件

然后等待下载完成即可

 

 

接下来说说28004的spi开发,我只做了flash读写相关,不过基本差不多

初始化spi gpio和controller

void initspib_gpio()
{
    EALLOW;
    GpioCtrlRegs.GPAPUD.bit.GPIO24 = 0;   // Enable pull-up on GPIO16 (SPISIMOA)
    GpioCtrlRegs.GPAPUD.bit.GPIO25 = 0;   // Enable pull-up on GPIO17 (SPISOMIA)
    GpioCtrlRegs.GPAPUD.bit.GPIO26 = 0;   // Enable pull-up on GPIO56 (SPICLKA)
                    //GpioCtrlRegs.GPBPUD.bit.GPIO58 = 0;   // Enable pull-up on GPIO56 (SPICLKA)

    GpioCtrlRegs.GPAQSEL2.bit.GPIO24 = 3; // Asynch input GPIO12 (SPISIMOA)
    GpioCtrlRegs.GPAQSEL2.bit.GPIO25 = 3; // Asynch input GPIO13 (SPISOMIA)
    GpioCtrlRegs.GPAQSEL2.bit.GPIO26 = 3; // Asynch input GPIO14 (SPICLKA)
                    //GpioCtrlRegs.GPBQSEL2.bit.GPIO58 = 3; // Asynch input GPIO14 (SPICLKA)


    GpioCtrlRegs.GPAMUX2.bit.GPIO24 = 2; // Configure GPIO12 as SPISIMOA
    GpioCtrlRegs.GPAMUX2.bit.GPIO25 = 2; // Configure GPIO13 as SPISOMIA
    GpioCtrlRegs.GPAMUX2.bit.GPIO26 = 2; // Configure GPIO14 as SPICLKA

    GpioCtrlRegs.GPAGMUX2.bit.GPIO24 = 1;
    GpioCtrlRegs.GPAGMUX2.bit.GPIO25 = 1;
    GpioCtrlRegs.GPAGMUX2.bit.GPIO26 = 1;
                    //GpioCtrlRegs.GPBMUX2.bit.GPIO58 = 6; // Configure GPIO14 as SPICLKA
                    //GpioCtrlRegs.GPBGMUX2.bit.GPIO58 = 1;


    GpioCtrlRegs.GPAMUX2.bit.GPIO27 = 0; // Configure GPIO15 as SPISTEB
    GpioCtrlRegs.GPADIR.bit.GPIO27 = 1;
    GpioDataRegs.GPASET.bit.GPIO27 = 1;
    GpioCtrlRegs.GPAQSEL2.bit.GPIO27 = 3; // Asynch input GPIO15 (SPISTEB)

    SpibRegs.SPICCR.bit.SPISWRESET = 0;
    SpibRegs.SPICCR.bit.CLKPOLARITY = 1;
    SpibRegs.SPICCR.bit.SPICHAR = (8-1);
    SpibRegs.SPICCR.bit.SPILBK = 0;


    SpibRegs.SPICTL.bit.MASTER_SLAVE = 1;
    SpibRegs.SPICTL.bit.TALK = 1;
    SpibRegs.SPICTL.bit.CLK_PHASE = 0;
    SpibRegs.SPICTL.bit.SPIINTENA = 0;


    SpibRegs.SPIBRR.bit.SPI_BIT_RATE = SPI_BRR;
    SpibRegs.SPIPRI.bit.FREE = 1;
    SpibRegs.SPICCR.bit.SPISWRESET = 1;
    EDIS;

}

void SPI_flash_block_erase_64k(unsigned char *write_array)
{
    SPI_flash_write_enable();
    DELAY_US(1000);
    SPI_writeArray1(write_array,4);
}

 

void SPI_writeArray1(unsigned char *write_array,uint16_t length)
{
    int i;
    uint16_t tempData = 0;
    uint16_t tempData1 = 0;
       uint16_t spi_rw_delay_cnt;
       volatile struct SPI_REGS *p;
       GpioDataRegs.GPACLEAR.bit.GPIO27 = 1;
    for(i=0;i< length;i++)
    {
        //val = write_array[i];
        tempData |= write_array[i];
        tempData <<= 8;

        p = &SpibRegs;
        spi_rw_delay_cnt = 0;
        while (1 == p->SPISTS.bit.BUFFULL_FLAG)
        {
                    if(++spi_rw_delay_cnt > 1000)
                    {
                        spi_rw_delay_cnt = 0;
                        break;
                    }

                }
        //val1 = tempData;
        p->SPITXBUF = tempData;
        spi_rw_delay_cnt = 0;
        while (0 == p->SPISTS.bit.INT_FLAG)
        {
            if(++spi_rw_delay_cnt > 1000)
            {
                spi_rw_delay_cnt = 0;
                break;
            }
        }//SpiaRegs.SPISTS.bit.INT_FLAG ==1

        tempData1 = p->SPIRXBUF;
          DELAY_US(20);
    }
    GpioDataRegs.GPADAT.bit.GPIO27 = 1;
    GpioDataRegs.GPASET.bit.GPIO27 = 1;
}

// only for spi flash read
void SPI_readArray(unsigned char *write_array,unsigned char *read_array,uint16_t length)
{
    int i;
    uint16_t tempData = 0;
    uint16_t tempData1 = 0;
       uint16_t spi_rw_delay_cnt;
       volatile struct SPI_REGS *p;
       GpioDataRegs.GPACLEAR.bit.GPIO27 = 1;
    for(i=0;i< length;i++)
    {
       // val = write_array[i];
        tempData |= write_array[i];
        tempData <<= 8;

        p = &SpibRegs;
        spi_rw_delay_cnt = 0;
                while (1 == p->SPISTS.bit.BUFFULL_FLAG)
                {
                    if(++spi_rw_delay_cnt > 1000)
                    {
                        spi_rw_delay_cnt = 0;
                        break;
                    }

                }
              //  val1 = tempData;
        p->SPITXBUF = tempData;
        spi_rw_delay_cnt = 0;
        while (0 == p->SPISTS.bit.INT_FLAG)
        {
         if(++spi_rw_delay_cnt > 1000)
         {
         spi_rw_delay_cnt = 0;
         break;
         }
         }//SpiaRegs.SPISTS.bit.INT_FLAG ==1

        tempData1 = p->SPIRXBUF;
        read_array[i] = (unsigned char)(tempData1 & 0xff);
    }
    GpioDataRegs.GPADAT.bit.GPIO27 = 1;
    GpioDataRegs.GPASET.bit.GPIO27 = 1;
}

上面的读写都是针对单个byte的哦

 

在读取内存数据时发现一个很奇怪的现象

bin_len_byte = (long)(*((int*)0x9F001))*65536 + *((int*)0x9F002);

在这个情况下,如果9f001里存任何值,结果都只会又9f002里的值,但是如果

    bLenCnt = (*((int*)0x9F001))*65536;
    bLenCnt1 =  (*(int*)0x9F002)&0x0000FFFF;
    bin_len_byte = bLenCnt+bLenCnt1;

这个写法就正确,非常奇怪

这篇关于鹏程万里------TI 28004开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134504

相关文章

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

基于Java开发一个极简版敏感词检测工具

《基于Java开发一个极简版敏感词检测工具》这篇文章主要为大家详细介绍了如何基于Java开发一个极简版敏感词检测工具,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录你是否还在为敏感词检测头疼一、极简版Java敏感词检测工具的3大核心优势1.1 优势1:DFA算法驱动,效率提升10

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

Java 与 LibreOffice 集成开发指南(环境搭建及代码示例)

《Java与LibreOffice集成开发指南(环境搭建及代码示例)》本文介绍Java与LibreOffice的集成方法,涵盖环境配置、API调用、文档转换、UNO桥接及REST接口等技术,提供... 目录1. 引言2. 环境搭建2.1 安装 LibreOffice2.2 配置 Java 开发环境2.3 配

Python38个游戏开发库整理汇总

《Python38个游戏开发库整理汇总》文章介绍了多种Python游戏开发库,涵盖2D/3D游戏开发、多人游戏框架及视觉小说引擎,适合不同需求的开发者入门,强调跨平台支持与易用性,并鼓励读者交流反馈以... 目录PyGameCocos2dPySoyPyOgrepygletPanda3DBlenderFife

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用