嵌入式开发高频面试题——第四章 常见算法(上)

2024-09-04 00:20

本文主要是介绍嵌入式开发高频面试题——第四章 常见算法(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 4.1 排序算法
        • 4.1.1 **各种排序算法的时间空间复杂度、稳定性** ⭐⭐⭐⭐⭐
        • 4.1.2 **各种排序算法什么时候有最好情况、最坏情况(尤其是快排)** ⭐⭐⭐⭐
      • 4.1.3 **冒泡排序** ⭐⭐⭐⭐
      • 4.1.4 **选择排序** ⭐⭐⭐⭐
      • 4.1.5 **插入排序** ⭐⭐⭐⭐
      • 4.1.6 **希尔排序** ⭐⭐⭐⭐
      • 4.1.7 **归并排序** ⭐⭐⭐⭐
      • 4.1.8 **快速排序** ⭐⭐⭐⭐⭐
      • 4.1.9 **快排的 partition 函数与归并的 Merge 函数** ⭐⭐⭐

4.1 排序算法

4.1.1 各种排序算法的时间空间复杂度、稳定性 ⭐⭐⭐⭐⭐
排序算法平均时间复杂度最好情况时间复杂度最坏情况时间复杂度空间复杂度稳定性
冒泡排序O(n^2)O(n)O(n^2)O(1)稳定
选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
插入排序O(n^2)O(n)O(n^2)O(1)稳定
希尔排序O(n log n)O(n log^2 n)O(n^2)O(1)不稳定
归并排序O(n log n)O(n log n)O(n log n)O(n)稳定
快速排序O(n log n)O(n log n)O(n^2)O(log n)不稳定
  • 稳定性:指的是如果两个元素相等,它们在排序前后的相对位置是否保持不变。
  • 时间复杂度:算法执行所需的时间,通常表示为最坏、平均和最好情况。
  • 空间复杂度:算法执行时所需的额外存储空间。
4.1.2 各种排序算法什么时候有最好情况、最坏情况(尤其是快排) ⭐⭐⭐⭐
  • 冒泡排序

    • 最好情况:数组已经有序,时间复杂度为 O(n)。
    • 最坏情况:数组逆序,时间复杂度为 O(n^2)。
  • 选择排序

    • 无论数组是否有序,最好和最坏情况的时间复杂度都是 O(n^2)。
  • 插入排序

    • 最好情况:数组已经有序,时间复杂度为 O(n)。
    • 最坏情况:数组逆序,时间复杂度为 O(n^2)。
  • 希尔排序

    • 最好情况:数组基本有序,时间复杂度接近 O(n log n)。
    • 最坏情况:数组完全无序,时间复杂度为 O(n^2)。
  • 归并排序

    • 最好和最坏情况的时间复杂度都是 O(n log n),因为归并排序是分治算法,分割和合并的过程都不会依赖于数据的顺序。
  • 快速排序

    • 最好情况:每次分割点恰好是数组的中位数,时间复杂度为 O(n log n)。
    • 最坏情况:每次分割点总是选择最大或最小值,时间复杂度为 O(n^2)(通常在数组几乎有序或完全无序时发生)。改进方式是使用随机化或三数取中。

4.1.3 冒泡排序 ⭐⭐⭐⭐

void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {bool swapped = false;for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {std::swap(arr[j], arr[j + 1]);swapped = true;}}if (!swapped)break;}
}

4.1.4 选择排序 ⭐⭐⭐⭐

void selectionSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {int minIndex = i;for (int j = i + 1; j < n; j++) {if (arr[j] < arr[minIndex])minIndex = j;}std::swap(arr[i], arr[minIndex]);}
}

4.1.5 插入排序 ⭐⭐⭐⭐

void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j--;}arr[j + 1] = key;}
}

4.1.6 希尔排序 ⭐⭐⭐⭐

void shellSort(int arr[], int n) {for (int gap = n / 2; gap > 0; gap /= 2) {for (int i = gap; i < n; i++) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}
}

4.1.7 归并排序 ⭐⭐⭐⭐

void merge(int arr[], int left, int mid, int right) {int n1 = mid - left + 1;int n2 = right - mid;int L[n1], R[n2];for (int i = 0; i < n1; i++)L[i] = arr[left + i];for (int i = 0; i < n2; i++)R[i] = arr[mid + 1 + i];int i = 0, j = 0, k = left;while (i < n1 && j < n2) {if (L[i] <= R[j])arr[k++] = L[i++];elsearr[k++] = R[j++];}while (i < n1)arr[k++] = L[i++];while (j < n2)arr[k++] = R[j++];
}void mergeSort(int arr[], int left, int right) {if (left < right) {int mid = left + (right - left) / 2;mergeSort(arr, left, mid);mergeSort(arr, mid + 1, right);merge(arr, left, mid, right);}
}

4.1.8 快速排序 ⭐⭐⭐⭐⭐

int partition(int arr[], int low, int high) {int pivot = arr[high];int i = (low - 1);for (int j = low; j <= high - 1; j++) {if (arr[j] < pivot) {i++;std::swap(arr[i], arr[j]);}}std::swap(arr[i + 1], arr[high]);return (i + 1);
}void quickSort(int arr[], int low, int high) {if (low < high) {int pi = partition(arr, low, high);quickSort(arr, low, pi - 1);quickSort(arr, pi + 1, high);}
}

4.1.9 快排的 partition 函数与归并的 Merge 函数 ⭐⭐⭐

  • Partition 函数(用于快速排序):

    • 用来确定一个枢轴(pivot),将数组划分为两部分,使得枢轴左边的元素小于枢轴,右边的元素大于枢轴。
    • 快排基于分治思想,利用递归将划分后的部分继续排序。
  • Merge 函数(用于归并排序):

    • 用来合并两个已经排序的数组,形成一个有序数组。
    • 归并排序的分治过程首先对数组分割,然后通过Merge函数逐步将有序的子数组合并成最终的有序数组。

这篇关于嵌入式开发高频面试题——第四章 常见算法(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134462

相关文章

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3