Python实现SM3算法

2024-09-03 22:20
文章标签 python 算法 实现 sm3

本文主要是介绍Python实现SM3算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 使用 Python 实现 SM3 算法的博客
        • 引言
        • SM3 算法的工作原理
        • SM3 算法的详细步骤
        • Python 面向对象实现 SM3 算法
        • 代码解析
        • 应用场景:数字签名验证
        • 总结

使用 Python 实现 SM3 算法的博客

引言

SM3 是中国国家密码管理局设计的密码杂凑算法,是我国密码学标准(GM/T 0004-2012)的一部分。SM3 算法类似于国际广泛使用的 SHA-256 算法,但具有一些独特的优化和改进。它主要用于数字签名、数据完整性校验和生成随机数等应用场景,尤其在中国的密码产品中具有重要地位。本文将详细介绍 SM3 算法的工作原理,并使用 Python 实现一个面向对象的 SM3 算法库,最后结合一个实际场景演示其应用。


SM3 算法的工作原理

SM3 是一种基于 Merkle-Damgård 架构的加密散列函数,它采用 256 位的输出哈希值。SM3 使用的消息块大小为 512 位(64 字节),并采用 256 位(8 字,32 位一个字)作为初始的哈希值长度。SM3 的哈希过程大致分为以下几个步骤:

  1. 消息填充(Padding):将输入消息填充到接近块大小的倍数(512 位)的长度。
  2. 初始化参数:初始化八个 32 位初始值(IV)。
  3. 消息扩展:将每个 512 位的消息分组扩展为 132 个 32 位字。
  4. 压缩函数:使用布尔函数、非线性函数和循环移位等操作对每一个消息分组进行压缩。
  5. 输出哈希值:最终将所有块的压缩结果拼接起来,生成一个 256 位的哈希值。
SM3 算法的详细步骤
  1. 消息填充

    • 填充规则和 SHA-256 类似。首先在消息末尾添加一个“1”比特,然后添加足够的“0”比特,使消息的总长度对 512 取模后等于 448(即接近 512 位的倍数)。最后附加一个 64 位的原始消息长度表示。
  2. 消息扩展

    • 消息扩展过程将 512 位的消息分块扩展为 132 个 32 位字。前 16 个字为消息分块本身,后 116 个字则是通过前面的字组合成的。
  3. 布尔函数

    • 使用三种布尔函数进行非线性操作,类似于 SHA-256 的设计。
    • ( FF(X, Y, Z) ) 和 ( GG(X, Y, Z) ) 是两种主要的非线性布尔函数,取决于当前处理的比特位置。
  4. 压缩函数

    • 将消息块和初始哈希值进行 64 轮的压缩操作。每一轮操作使用不同的布尔函数、常量和移位来更新状态变量。
  5. 输出哈希值

    • 将每一轮的结果累加起来得到最后的哈希值输出。

Python 面向对象实现 SM3 算法

下面是一个基于 Python 面向对象思想的 SM3 算法实现。此实现包括消息填充、消息扩展、压缩函数和哈希计算等核心部分。

import structclass SM3:def __init__(self, message):"""初始化 SM3 实例,准备计算哈希值。"""self.message = message# 初始哈希值 (IV)self.IV = [0x7380166F, 0x4914B2B9, 0x172442D7, 0xDA8A0600,0xA96F30BC, 0x163138AA, 0xE38DEE4D, 0xB0FB0E4E]# 常量self.T = [0x79CC4519 if i < 16 else 0x7A879D8A for i in range(64)]self._hash = self._calculate_sm3()def _padding(self):"""消息填充,使消息长度接近512位的倍数。"""message = bytearray(self.message, 'utf-8')message_len = len(message) * 8  # 原始消息的位长度message.append(0x80)  # 添加 '1' 比特# 填充 '0' 比特,直到消息长度模512等于448位message.extend([0x00] * ((56 - len(message) % 64) % 64))# 添加原始消息长度的64位表示message += struct.pack('>Q', message_len)return messagedef _left_rotate(self, n, m):"""循环左移操作。"""return ((n << m) & 0xFFFFFFFF) | ((n >> (32 - m)) & 0xFFFFFFFF)def _message_extension(self, block):"""消息扩展,将512位的消息扩展为132个32位字。"""W = list(struct.unpack('>16L', block))  # 解析16个字# 扩展W[16]到W[67]for i in range(16, 68):W.append(self._P1(W[i - 16] ^ W[i - 9] ^ self._left_rotate(W[i - 3], 15)) ^self._left_rotate(W[i - 13], 7) ^ W[i - 6])# 扩展W[68]到W[131]W_ = [W[i] ^ W[i + 4] for i in range(64)]return W, W_def _P1(self, X):"""非线性变换 P1。"""return X ^ self._left_rotate(X, 15) ^ self._left_rotate(X, 23)def _P0(self, X):"""非线性变换 P0。"""return X ^ self._left_rotate(X, 9) ^ self._left_rotate(X, 17)def _FF(self, X, Y, Z, j):"""布尔函数 FF。"""return (X ^ Y ^ Z) if j < 16 else ((X & Y) | (X & Z) | (Y & Z))def _GG(self, X, Y, Z, j):"""布尔函数 GG。"""return (X ^ Y ^ Z) if j < 16 else ((X & Y) | (~X & Z))def _compress(self, V, B):"""压缩函数,对消息块进行压缩。"""W, W_ = self._message_extension(B)A, B, C, D, E, F, G, H = V# 64轮压缩操作for j in range(64):SS1 = self._left_rotate((self._left_rotate(A, 12) + E + self._left_rotate(self.T[j], j % 32)) & 0xFFFFFFFF, 7)SS2 = SS1 ^ self._left_rotate(A, 12)TT1 = (self._FF(A, B, C, j) + D + SS2 + W_[j]) & 0xFFFFFFFFTT2 = (self._GG(E, F, G, j) + H + SS1 + W[j]) & 0xFFFFFFFFD = CC = self._left_rotate(B, 9)B = AA = TT1H = GG = self._left_rotate(F, 19)F = EE = self._P0(TT2)# 更新V值return [(V[i] ^ var) & 0xFFFFFFFF for i, var in enumerate([A, B, C, D, E, F, G, H])]def _calculate_sm3(self):"""计算 SM3 哈希值的主函数。"""padded_message = self._padding()blocks = [padded_message[i:i + 64] for i in range(0, len(padded_message), 64)]V = self.IV# 对每个消息块进行压缩for block in blocks:V = self._compress(V, block)return ''.join(f'{x:08x}' for x in V)def hexdigest(self):"""返回最终的 SM3 哈希值。"""return self._hash# 示例用法
if __name__ == "__main__":message = "Hello, SM3!"sm3 = SM3(message)print(f"原始消息: {message}")print(f"SM3 哈希值: {sm3.hexdigest()}")
代码解析
  1. 消息填充与初始化_padding 方法用于填充消息,并确保其符合 SM3 要求的 512 位块大小。

  2. **逻

辑操作**:_left_rotate 方法实现了循环左移操作,这是 SM3 哈希计算中的基础操作。

  1. 消息扩展_message_extension 方法将消息块扩展为 132 个 32 位字。

  2. 布尔函数与非线性变换_FF, _GG, _P0, _P1 方法分别定义了 SM3 的布尔函数和非线性变换。

  3. 压缩函数_compress 方法实现了 SM3 的核心逻辑,包括消息调度、64 轮的哈希计算、以及状态变量更新。

  4. 输出结果hexdigest 方法返回计算所得的 SM3 哈希值。


应用场景:数字签名验证

SM3 算法广泛用于数字签名中,确保数据的真实性和完整性。以下是一个基于 Python 的场景演示,展示如何使用 SM3 算法生成和验证数字签名:

class DigitalSignature:def __init__(self, private_key):self.private_key = private_key  # 私钥def sign(self, message):"""使用私钥对消息进行签名。"""sm3 = SM3(message)hash_val = sm3.hexdigest()signature = self._sign_with_private_key(hash_val)return signaturedef verify(self, message, signature):"""使用公钥验证消息签名。"""sm3 = SM3(message)hash_val = sm3.hexdigest()return self._verify_with_public_key(hash_val, signature)def _sign_with_private_key(self, hash_val):"""模拟私钥签名过程。"""# 此处为简化签名过程,假设私钥为简单的转换return hash_val[::-1]  # 反转哈希值作为签名def _verify_with_public_key(self, hash_val, signature):"""模拟公钥验证过程。"""# 验证签名是否与原哈希值匹配return hash_val == signature[::-1]# 示例使用
private_key = "user_private_key"
ds = DigitalSignature(private_key)message = "Hello, SM3 with Digital Signature!"
signature = ds.sign(message)
print(f"消息签名: {signature}")if ds.verify(message, signature):print("签名验证成功!消息未被篡改。")
else:print("签名验证失败!消息可能已被篡改。")
总结

本文详细介绍了 SM3 算法的原理和 Python 实现,并提供了一个基于 SM3 的数字签名验证示例。SM3 算法在中国的密码标准中起着重要作用,其高效性和安全性使其成为密码系统中数据完整性和认证的重要工具。掌握 SM3 算法的实现和应用,可以帮助更好地理解和使用现代密码学技术。

这篇关于Python实现SM3算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134209

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法