DataWhale AI夏令营-《李宏毅深度学习教程》笔记-task3

2024-09-03 22:04

本文主要是介绍DataWhale AI夏令营-《李宏毅深度学习教程》笔记-task3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DataWhale AI夏令营-《李宏毅深度学习教程》笔记-task2

  • 第五章 循环神经网络
    • 5.1 独热编码
    • 5.2 RNN架构
    • 5.3 其他RNN
      • 5.3.1 Elman 网络 &Jordan 网络
      • 5.3.2 双向循环神经网络

第五章 循环神经网络

循环神经网络RNN,RNN在处理序列数据和时间依赖性强的问题上具有独特的优势,尤其是在自然语言处理和时间序列预测领域。
由图可知RNN的输入来自于上一层的输出结果和当前层的输入,所以RNN常被用来预测金融市场、气象等领域,通过分析过去的数据序列预测未来的趋势。
在这里插入图片描述
但是这种RNN的结果有很大的缺陷就是,当进行长序列预测时,RNN可能会由于序列较长遗忘了之前某些重要信息,导致预测精度下降。

为了解决RNN长序列遗忘问题,长短记忆网络LSTM被开发出来,通过引入三个“门”机制来管理记忆的存储、更新和删除,这使得它能够更有效地捕捉长期依赖关系。这三个门分别是输入门、遗忘门和输出门,如下图,it作为输入门;ft作为遗忘门;ot作输出门。
在这里插入图片描述
除了LSTM之外,Transformer架构也很好解决了RNN所面临的长期依赖和计算效率问题,并且Transformer架构目前也被广泛的应用于大模型领域,也取得了很好的效果。
Transformer架构的核心包括以下三个方面:

  1. 自注意力机制(Self-Attention): 自注意力机制是 Transformer的核心。它通过计算输入序列中每个元素与其他所有元素之间的相似性(注意力权重),并根据这些权重加权和更新每个元素的表示。这样,模型能够捕捉到序列中元素之间的依赖关系,而不受元素位置的限制。
  2. 位置编码(Positional Encoding): 由于 Transformer模型不依赖序列顺序,它需要一种方法来表示输入序列中元素的位置。位置编码是一种向量,它被添加到输入的嵌入向量中,用来保留序列的位置信息。
  3. 多头注意力机制(Multi-Head Attention):多头注意力机制通过将自注意力机制应用于多个不同的“头”,从不同的子空间中学习信息。这样可以捕捉到更多样化的依赖关系,并提高模型的表达能力。
    在这里插入图片描述

5.1 独热编码

回归本书正题,独热编码(one-hot)编码,常被用在自然语言处理领域多标签多分类等任务中。编码形式如图所示,即对应维度标签为1,其余为0。
在这里插入图片描述

5.2 RNN架构

其实前面提到过了RNN架构,书中给出的例子如下图,其实也就是之前提到过的每一层的输出不知取决于当前层的输入还有上一层的输出有关,书中给出的解释是,上一层的输出结果会储存在记忆层中,这时候当前隐藏层预测结果会同时考虑当前的输入与记忆层的内容。
请添加图片描述

5.3 其他RNN

5.3.1 Elman 网络 &Jordan 网络

Jordan 网络,Jordan 网络存的是整个网络输出的值,它把输出值在下一个时间点在读进来,把输出存到记忆元里。Elman网络没有目标,很难控制说它能学到什么隐藏层信息(学到什么放到记忆元里),但是Jordan网络是有目标,比较很清楚记忆元存储的东西。
请添加图片描述

5.3.2 双向循环神经网络

循环神经网络还可以是双向,即双向循环神经网络(Bidirectional Recurrent Neural Network,Bi-RNN)。如图,假设句子里的每一个单词用 xt 表示,其是先读 xt,再读 xt+1、xt+2。但其读取方向也可以是反过来的,它可以先读xt+2,再读xt+1、xt。我们可以同时训练一个正向的循环神经网络,又可以训练一个逆向的循环神经网络,然后把这两个循环神经网络的隐藏层拿出来,都接给一个输出层得到最后的yt。所以把正向的网络在输入xt 的时候跟逆向的网络在输入 xt 时,都丢到输出层产生 yt,产生 yt+1,yt+2,以此类推。
双向循环神经网络的好处是,神经元产生输出的时候,它看的范围是比较广的。
请添加图片描述

这篇关于DataWhale AI夏令营-《李宏毅深度学习教程》笔记-task3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134171

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github

C#实现SHP文件读取与地图显示的完整教程

《C#实现SHP文件读取与地图显示的完整教程》在地理信息系统(GIS)开发中,SHP文件是一种常见的矢量数据格式,本文将详细介绍如何使用C#读取SHP文件并实现地图显示功能,包括坐标转换、图形渲染、平... 目录概述功能特点核心代码解析1. 文件读取与初始化2. 坐标转换3. 图形绘制4. 地图交互功能缩放

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达