二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON)

本文主要是介绍二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目的

由于部分数据类型频率为1s,从而数据规模特别大,因此完整的JSON放在Hive中解析起来,尤其是在单机环境下,效率特别慢,无法满足业务需求。

而Flume的拦截器并不能很好的转换数据,因为只能采用Java方式,从Kafka的主题A中采集数据,并解析字段,然后写入到放在Kafka主题B中

二 、原始数据格式

JSON格式比较复杂,对象中包含数组,数组中包含对象

{
    "deviceNo": "39",
    "sourceDeviceType": null,
    "sn": null,
    "model": null,
    "createTime": "2024-09-03 14:40:00",
    "data": {
        "cycle": 300,
        "sectionList": [{
            "sectionNo": 1,
            "coilList": [{
                "laneNo": 1,
                "laneType": null,
                "coilNo": 1,
                "volumeSum": 3,
                "volumePerson": 0,
                "volumeCarNon": 0,
                "volumeCarSmall": 3,
                "volumeCarMiddle": 0,
                "volumeCarBig": 0,
                "speedAvg": 24.15,
                "timeOccupancy": 0.98,
                "averageHeadway": 162.36,
                "averageGap": 161.63,
                "speed85": 38.0
            },
            {
                "laneNo": 8,
                "laneType": null,
                "coilNo": 8,
                "volumeSum": 1,
                "volumePerson": 0,
                "volumeCarNon": 0,
                "volumeCarSmall": 1,
                "volumeCarMiddle": 0,
                "volumeCarBig": 0,
                "speedAvg": 49.43,
                "timeOccupancy": 0.3,
                "averageHeadway": 115.3,
                "averageGap": 115.1,
                "speed85": 49.43
            }]
        }]
    }
}

三、Java代码

package com.kgc;import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;public class KafkaKafkaStatistics {// 添加 Kafka Producer 配置private static Properties producerProps() {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092");props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);props.put(ProducerConfig.ACKS_CONFIG, "-1");props.put(ProducerConfig.RETRIES_CONFIG, "3");props.put(ProducerConfig.BATCH_SIZE_CONFIG, "16384");props.put(ProducerConfig.LINGER_MS_CONFIG, "1");props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, "33554432");return props;}public static void main(String[] args) {Properties prop = new Properties();prop.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092");prop.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);prop.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");prop.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");prop.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");// 每一个消费,都要定义不同的Group_IDprop.put(ConsumerConfig.GROUP_ID_CONFIG, "statistics_group");KafkaConsumer<String, String> consumer = new KafkaConsumer<>(prop);consumer.subscribe(Collections.singleton("topic_internal_data_statistics"));ObjectMapper mapper = new ObjectMapper();// 初始化 Kafka ProducerKafkaProducer<String, String> producer = new KafkaProducer<>(producerProps());while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {try {JsonNode rootNode = mapper.readTree(record.value());System.out.println("原始数据"+rootNode);String device_no = rootNode.get("deviceNo").asText();String source_device_type = rootNode.get("sourceDeviceType").asText();String sn = rootNode.get("sn").asText();String model = rootNode.get("model").asText();String create_time = rootNode.get("createTime").asText();JsonNode dataNode = rootNode.get("data");String  cycle = dataNode.get("cycle").asText();for (JsonNode sectionStatus : dataNode.get("sectionList")) {String section_no = sectionStatus.get("sectionNo").asText();JsonNode coilList = sectionStatus.get("coilList");for (JsonNode coilItem : coilList) {String lane_no = coilItem.get("laneNo").asText();String lane_type = coilItem.get("laneType").asText();String coil_no = coilItem.get("coilNo").asText();String volume_sum = coilItem.get("volumeSum").asText();String volume_person = coilItem.get("volumePerson").asText();String volume_car_non = coilItem.get("volumeCarNon").asText();String volume_car_small = coilItem.get("volumeCarSmall").asText();String volume_car_middle = coilItem.get("volumeCarMiddle").asText();String volume_car_big = coilItem.get("volumeCarBig").asText();String speed_avg = coilItem.get("speedAvg").asText();String speed_85 = coilItem.get("speed85").asText();String time_occupancy = coilItem.get("timeOccupancy").asText();String average_headway = coilItem.get("averageHeadway").asText();String average_gap = coilItem.get("averageGap").asText();String outputLine = String.format("%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s",device_no, source_device_type, sn, model, create_time, cycle, lane_no, lane_type, section_no, coil_no, volume_sum, volume_person,volume_car_non, volume_car_small, volume_car_middle, volume_car_big, speed_avg, speed_85, time_occupancy, average_headway, average_gap);// 发送数据到 KafkaProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic_db_data_statistics", record.key(), outputLine);producer.send(producerRecord, (RecordMetadata metadata, Exception e) -> {if (e != null) {e.printStackTrace();} else {System.out.println("The offset of the record we just sent is: " + metadata.offset());}});}}} catch (Exception e) {e.printStackTrace();}}consumer.commitAsync();}}}

剩下的几步参考二百五十九、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(一般JSON)这篇博客

四、开启Kafka主题消费者

五、运行测试

六、ODS层新表结构

七、Flume采集配置文件

八、运行Flume任务,检查HDFS文件、以及ODS表数据

这篇关于二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133388

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4