二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON)

本文主要是介绍二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目的

由于部分数据类型频率为1s,从而数据规模特别大,因此完整的JSON放在Hive中解析起来,尤其是在单机环境下,效率特别慢,无法满足业务需求。

而Flume的拦截器并不能很好的转换数据,因为只能采用Java方式,从Kafka的主题A中采集数据,并解析字段,然后写入到放在Kafka主题B中

二 、原始数据格式

JSON格式比较复杂,对象中包含数组,数组中包含对象

{
    "deviceNo": "39",
    "sourceDeviceType": null,
    "sn": null,
    "model": null,
    "createTime": "2024-09-03 14:40:00",
    "data": {
        "cycle": 300,
        "sectionList": [{
            "sectionNo": 1,
            "coilList": [{
                "laneNo": 1,
                "laneType": null,
                "coilNo": 1,
                "volumeSum": 3,
                "volumePerson": 0,
                "volumeCarNon": 0,
                "volumeCarSmall": 3,
                "volumeCarMiddle": 0,
                "volumeCarBig": 0,
                "speedAvg": 24.15,
                "timeOccupancy": 0.98,
                "averageHeadway": 162.36,
                "averageGap": 161.63,
                "speed85": 38.0
            },
            {
                "laneNo": 8,
                "laneType": null,
                "coilNo": 8,
                "volumeSum": 1,
                "volumePerson": 0,
                "volumeCarNon": 0,
                "volumeCarSmall": 1,
                "volumeCarMiddle": 0,
                "volumeCarBig": 0,
                "speedAvg": 49.43,
                "timeOccupancy": 0.3,
                "averageHeadway": 115.3,
                "averageGap": 115.1,
                "speed85": 49.43
            }]
        }]
    }
}

三、Java代码

package com.kgc;import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;public class KafkaKafkaStatistics {// 添加 Kafka Producer 配置private static Properties producerProps() {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092");props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);props.put(ProducerConfig.ACKS_CONFIG, "-1");props.put(ProducerConfig.RETRIES_CONFIG, "3");props.put(ProducerConfig.BATCH_SIZE_CONFIG, "16384");props.put(ProducerConfig.LINGER_MS_CONFIG, "1");props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, "33554432");return props;}public static void main(String[] args) {Properties prop = new Properties();prop.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092");prop.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);prop.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");prop.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");prop.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");// 每一个消费,都要定义不同的Group_IDprop.put(ConsumerConfig.GROUP_ID_CONFIG, "statistics_group");KafkaConsumer<String, String> consumer = new KafkaConsumer<>(prop);consumer.subscribe(Collections.singleton("topic_internal_data_statistics"));ObjectMapper mapper = new ObjectMapper();// 初始化 Kafka ProducerKafkaProducer<String, String> producer = new KafkaProducer<>(producerProps());while (true) {ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {try {JsonNode rootNode = mapper.readTree(record.value());System.out.println("原始数据"+rootNode);String device_no = rootNode.get("deviceNo").asText();String source_device_type = rootNode.get("sourceDeviceType").asText();String sn = rootNode.get("sn").asText();String model = rootNode.get("model").asText();String create_time = rootNode.get("createTime").asText();JsonNode dataNode = rootNode.get("data");String  cycle = dataNode.get("cycle").asText();for (JsonNode sectionStatus : dataNode.get("sectionList")) {String section_no = sectionStatus.get("sectionNo").asText();JsonNode coilList = sectionStatus.get("coilList");for (JsonNode coilItem : coilList) {String lane_no = coilItem.get("laneNo").asText();String lane_type = coilItem.get("laneType").asText();String coil_no = coilItem.get("coilNo").asText();String volume_sum = coilItem.get("volumeSum").asText();String volume_person = coilItem.get("volumePerson").asText();String volume_car_non = coilItem.get("volumeCarNon").asText();String volume_car_small = coilItem.get("volumeCarSmall").asText();String volume_car_middle = coilItem.get("volumeCarMiddle").asText();String volume_car_big = coilItem.get("volumeCarBig").asText();String speed_avg = coilItem.get("speedAvg").asText();String speed_85 = coilItem.get("speed85").asText();String time_occupancy = coilItem.get("timeOccupancy").asText();String average_headway = coilItem.get("averageHeadway").asText();String average_gap = coilItem.get("averageGap").asText();String outputLine = String.format("%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s",device_no, source_device_type, sn, model, create_time, cycle, lane_no, lane_type, section_no, coil_no, volume_sum, volume_person,volume_car_non, volume_car_small, volume_car_middle, volume_car_big, speed_avg, speed_85, time_occupancy, average_headway, average_gap);// 发送数据到 KafkaProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic_db_data_statistics", record.key(), outputLine);producer.send(producerRecord, (RecordMetadata metadata, Exception e) -> {if (e != null) {e.printStackTrace();} else {System.out.println("The offset of the record we just sent is: " + metadata.offset());}});}}} catch (Exception e) {e.printStackTrace();}}consumer.commitAsync();}}}

剩下的几步参考二百五十九、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(一般JSON)这篇博客

四、开启Kafka主题消费者

五、运行测试

六、ODS层新表结构

七、Flume采集配置文件

八、运行Flume任务,检查HDFS文件、以及ODS表数据

这篇关于二百六十、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(复杂JSON)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1133388

相关文章

Spring 缓存在项目中的使用详解

《Spring缓存在项目中的使用详解》Spring缓存机制,Cache接口为缓存的组件规范定义,包扩缓存的各种操作(添加缓存、删除缓存、修改缓存等),本文给大家介绍Spring缓存在项目中的使用... 目录1.Spring 缓存机制介绍2.Spring 缓存用到的概念Ⅰ.两个接口Ⅱ.三个注解(方法层次)Ⅲ.

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Spring Cache注解@Cacheable的九个属性详解

《SpringCache注解@Cacheable的九个属性详解》在@Cacheable注解的使用中,共有9个属性供我们来使用,这9个属性分别是:value、cacheNames、key、key... 目录1.value/cacheNames 属性2.key属性3.keyGeneratjavascriptor

redis在spring boot中异常退出的问题解决方案

《redis在springboot中异常退出的问题解决方案》:本文主要介绍redis在springboot中异常退出的问题解决方案,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴... 目录问题:解决 问题根源️ 解决方案1. 异步处理 + 提前ACK(关键步骤)2. 调整Redis消费者组

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

SpringCloud整合MQ实现消息总线服务方式

《SpringCloud整合MQ实现消息总线服务方式》:本文主要介绍SpringCloud整合MQ实现消息总线服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、背景介绍二、方案实践三、升级版总结一、背景介绍每当修改配置文件内容,如果需要客户端也同步更新,

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

java中XML的使用全过程

《java中XML的使用全过程》:本文主要介绍java中XML的使用全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录什么是XML特点XML作用XML的编写语法基本语法特殊字符编写约束XML的书写格式DTD文档schema文档解析XML的方法​​DOM解析XM