零基础学启发式算法(5)-遗传算法 (Genetic Algorithm)

2024-09-03 07:32

本文主要是介绍零基础学启发式算法(5)-遗传算法 (Genetic Algorithm),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、遗传算法 (Genetic Algorithm, GA) 

源于达尔文的进化论,将问题的一个解当作种群中的一个个体。

gene:基因

chromosome: 染色体

population:种群

crossover:交叉

mutation:变异

selection:选择

通过多轮的“选择,交叉和变异”,选择适应度最好的个体作为问题的最优解。

  1. 选择:优胜劣汰,适者生存。

  2. 交叉:丰富种群,持续优化。

  3. 变异:随机扰动,避免局部最优。

算法的整个流程如下所示:

二、流程

1.初始化种群

    在初始化种群时,首先对每一个个体进行编码,编码后的个体可以称之为一个染色体。一个染色体可以表示为:

        x=(p1,p2,…,pm)

    其中,m 为染色体的长度或编码的位数。初始化种群个体共 n 个,对于任意一个个体染色体的任意一位 i,随机生成一个随机数 rand∈U(0,1),若 rand>0.5,则 pi=1,否则 pi=0。

    

    常用的编码方式有

  • 二进制编码,

  • 实值编码,

  • 矩阵编码,

  • 树形编码等。

   

    以二进制为例,对于 p∈{0,1,…,100} 中 pi=50 可以表示为:

        xi=5010=01100102

2.计算适应度

    适应度函数( Fitness Function ) f(x)用来评价个体的优劣程度,通常为问题的目标函数,对最小化优化问题 f(x)=−min∑L(y^,y),对最大化优化问题 f(x)=max∑L(y^,y),其中 L 为损失函数。

3.选择

    对于种群中的每个个体,计算其适应度,记第 i 个个体的适应度为 Fi=f(xi)。则个体在一次选择中被选中的概率为:

    为了保证种群的数量不变,我们需要重复 n 次选择过程,单次选择采用轮盘赌的方法。利用计算得到的被选中的概率计算每个个体的累积概率:

对于如下一个示例:

指标 \ 个体x1x2x3x4x5x6
适应度 (F)1006060403020
概率 (P)0.3220.1940.1940.1290.0970.064
累积概率 (CP)0.3220.5160.710.8390.9361

    每次选择时,随机生成 rand∈U(0,1),当 CPi−1≤rand≤CPi 时,选择个体 xi。选择的过程如同在下图的轮盘上安装一个指针并随机旋转,每次指针停止的位置的即为选择的个体。

4.交叉

  • 单点交叉:在染色体中选择一个切点,然后将其中一部分同另一个染色体的对应部分进行交换得到两个新的个体。交叉过程如下图所示:

  • 多点交叉:在染色体中选择多个切点,对其任意两个切点之间部分以概率 Pc 进行交换,其中 Pc 为一个较大的值,例如 Pm=0.9。两点交叉过程如下图所示:

  • 均匀交叉:染色体任意对应的位置以一定的概率进行交换得到新的个体。交叉过程如下图所示:

5. 变异

    将个体染色体编码串中的某些基因座上的基因值用该基因座上的其它等位基因来替换,从而形成新的个体。

    变异以一定的概率 Pm 发生变化,其中 Pm 为一个较小的值,例如 Pm=0.05。

以下变异算子适用于二进制编码和浮点数编码的个体:

  • 基本位变异(Simple Mutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。

  • 均匀变异(Uniform Mutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)

  • 边界变异(Boundary Mutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。

  • 非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。

  • 高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P**2的正态分布的一个随机数来替换原有的基因值。

对于基本的遗传算法还有多种优化方法,例如:精英主义,即将每一代中的最优解原封不动的复制到下一代中,这保证了最优解可以存活到整个算法结束。

三、例子

寻找多峰函数的最大值这个问题为例:

将(x, y)这一可能的解作为一个个体;将多峰函数的函数值f(x, y)作为个体的适应度;对(x, y)进行编码作为个体的基因;以适应度为标准不断筛选生物个体;

https://leovan.me/cn/2019/04/heuristic-algorithms/

https://learnwithpanda.com/2020/09/20/what-is-genetic-algorithm/

https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3?gi=8c025ac095e1

https://www.jianshu.com/p/ae5157c26af9

https://blog.csdn.net/gzxb1995/article/details/89060839

这篇关于零基础学启发式算法(5)-遗传算法 (Genetic Algorithm)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1132412

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ