【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署

2024-09-03 06:36

本文主要是介绍【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署
  • MindSearch 部署到Github Codespace 和 Hugging Face Space
  • 创建开发机 & 环境配置
  • MindSearch下载及环境配置
  • 获取硅基流动API Key
  • 作业 - 基础任务
  • 在Github codespaces 启动 MindSearch
  • 通过 Github Codespace 完成HuggingFace Space部署
  • 把刚才准备的文件都copy进来

【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署

MindSearch 部署到Github Codespace 和 Hugging Face Space

和原有的CPU版本相比区别是把internstudio换成了github codespace。

随着硅基流动提供了免费的 InternLM2.5-7B-Chat 服务(免费的 InternLM2.5-7B-Chat 真的很香),MindSearch 的部署与使用也就迎来了纯 CPU 版本,进一步降低了部署门槛。那就让我们来一起看看如何使用硅基流动的 API 来部署 MindSearch 吧。

创建开发机 & 环境配置

由于HuggingFace被墙,我们通过github-codespace 的 vscode Linux 环境提交到 hugging face。打开codespace主页,选择blank template,浏览器会自动在新的页面打开一个web版的vscode。
在这里插入图片描述

MindSearch下载及环境配置

#MindSearch下载
mkdir -p /workspaces/mindsearch
cd /workspaces/mindsearch
git clone https://github.com/InternLM/MindSearch.git
cd MindSearch && git checkout b832275 && cd …

#创建环境
conda create -n mindsearch python=3.10 -y
#激活环境
conda activate mindsearch
#安装依赖
pip install -r /workspaces/mindsearch/MindSearch/requirements.txt

获取硅基流动API Key

首先打开 https://account.siliconflow.cn/login 来注册硅基流动的账号。完成注册后,打开 https://cloud.siliconflow.cn/account/ak 来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。
在这里插入图片描述

作业 - 基础任务

将 MindSearch 部署到 HuggingFace,并提供截图。(记录复现过程并截图)

在Github codespaces 启动 MindSearch

启动后端
硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们可以直接执行下面的代码来启动 MindSearch 的后端。

export SILICON_API_KEY=第二步中复制的密钥

cd /workspaces/mindsearch/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch
在这里插入图片描述

启动前端
在后端启动完成后,我们打开新终端运行如下命令来启动 MindSearch 的前端。

cd /workspaces/mindsearch/MindSearch
python frontend/mindsearch_gradio.py
在这里插入图片描述

通过InternLM 启动web浏览器访问
上述同样步骤在InternLM开发机(10%A100即可)部署启动后 把 8002 端口和 7882 端口都映射到本地:

ssh -CNg -L 8002:127.0.0.1:8002 -L 7882:127.0.0.1:7882 root@ssh.intern-ai.org.cn -p 42678
然后在本地浏览器中打开 localhost:7882 即可体验啦。
在这里插入图片描述
效果

如果遇到了 timeout 的问题,可以按照 文档 换用 Bing 的搜索接口。

通过 Github Codespace 完成HuggingFace Space部署

我们首先打开 https://huggingface.co/spaces ,并点击 Create new Space。然后进入 Settings,配置硅基流动的 API Key。选择 New secrets,name 一栏输入 SILICON_API_KEY,value 一栏输入你的 API Key 的内容。

在这里插入图片描述

先新建一个目录,准备提交到 HuggingFace Space 的全部文件。

#创建新目录
mkdir -p /root/mindsearch/mindsearch_deploy
#准备复制文件
cd /root/mindsearch
cp -r /root/mindsearch/MindSearch/mindsearch /root/mindsearch/mindsearch_deploy
cp /root/mindsearch/MindSearch/requirements.txt /root/mindsearch/mindsearch_deploy
#创建 app.py 作为程序入口
touch /root/mindsearch/mindsearch_deploy/app.py
其中,app.py 的内容如下:
import json
import os

import gradio as gr
import requests
from lagent.schema import AgentStatusCode

os.system(“python -m mindsearch.app --lang cn --model_format internlm_silicon &”)

PLANNER_HISTORY = []
SEARCHER_HISTORY = []

def rst_mem(history_planner: list, history_searcher: list):
‘’’
Reset the chatbot memory.
‘’’
history_planner = []
history_searcher = []
if PLANNER_HISTORY:
PLANNER_HISTORY.clear()
return history_planner, history_searcher

def format_response(gr_history, agent_return):
if agent_return[‘state’] in [
AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING
]:
gr_history[-1][1] = agent_return[‘response’]
elif agent_return[‘state’] == AgentStatusCode.PLUGIN_START:
thought = gr_history[-1][1].split(‘')[0] if agent_return['response'].startswith('’):
gr_history[-1][1] = thought + ‘\n’ + agent_return[‘response’]
elif agent_return[‘state’] == AgentStatusCode.PLUGIN_END:
thought = gr_history[-1][1].split('')[0] if isinstance(agent_return['response'], dict): gr_history[-1][ 1] = thought + '\n' + f'json\n{json.dumps(agent_return[“response”], ensure_ascii=False, indent=4)}\n' # noqa: E501 elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN: assert agent_return['inner_steps'][-1]['role'] == 'environment' item = agent_return['inner_steps'][-1] gr_history.append([ None, f"json\n{json.dumps(item[‘content’], ensure_ascii=False, indent=4)}\n```"
])
gr_history.append([None, ‘’])
return

def predict(history_planner, history_searcher):

def streaming(raw_response):for chunk in raw_response.iter_lines(chunk_size=8192,decode_unicode=False,delimiter=b'\n'):if chunk:decoded = chunk.decode('utf-8')if decoded == '\r':continueif decoded[:6] == 'data: ':decoded = decoded[6:]elif decoded.startswith(': ping - '):continueresponse = json.loads(decoded)yield (response['response'], response['current_node'])global PLANNER_HISTORY
PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0]))
new_search_turn = Trueurl = 'http://localhost:8002/solve'
headers = {'Content-Type': 'application/json'}
data = {'inputs': PLANNER_HISTORY}
raw_response = requests.post(url,headers=headers,data=json.dumps(data),timeout=20,stream=True)for resp in streaming(raw_response):agent_return, node_name = respif node_name:if node_name in ['root', 'response']:continueagent_return = agent_return['nodes'][node_name]['detail']if new_search_turn:history_searcher.append([agent_return['content'], ''])new_search_turn = Falseformat_response(history_searcher, agent_return)if agent_return['state'] == AgentStatusCode.END:new_search_turn = Trueyield history_planner, history_searcherelse:new_search_turn = Trueformat_response(history_planner, agent_return)if agent_return['state'] == AgentStatusCode.END:PLANNER_HISTORY = agent_return['inner_steps']yield history_planner, history_searcher
return history_planner, history_searcher

with gr.Blocks() as demo:
gr.HTML(“”“

MindSearch Gradio Demo

”“”)
gr.HTML(“”“

MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. You can deploy your own Perplexity.ai-style search engine using either closed-source LLMs (GPT, Claude) or open-source LLMs (InternLM2.5-7b-chat).

”“”)
gr.HTML(“”"

🔗 GitHub
📄 Arxiv
📚 Hugging Face Papers
🤗 Hugging Face Demo

“”")
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
with gr.Column():
planner = gr.Chatbot(label=‘planner’,
height=700,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True)
with gr.Column():
searcher = gr.Chatbot(label=‘searcher’,
height=700,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True)
with gr.Row():
user_input = gr.Textbox(show_label=False,
placeholder=‘帮我搜索一下 InternLM 开源体系’,
lines=5,
container=False)
with gr.Row():
with gr.Column(scale=2):
submitBtn = gr.Button(‘Submit’)
with gr.Column(scale=1, min_width=20):
emptyBtn = gr.Button(‘Clear History’)
def user(query, history):return '', history + [[query, '']]submitBtn.click(user, [user_input, planner], [user_input, planner],queue=False).then(predict, [planner, searcher],[planner, searcher])
emptyBtn.click(rst_mem, [planner, searcher], [planner, searcher],queue=False)

demo.queue()
demo.launch(server_name=‘0.0.0.0’,
server_port=7860,
inbrowser=True,
share=True)

在最后,将 /root/mindsearch/mindsearch_deploy 目录下的文件(使用 git)提交到 HuggingFace Space 即可完成部署了。

部署到 HuggingFace Space
接下来创建一个有写权限的token。
在这里插入图片描述
从huggingface把空的代码仓库clone到codespace。在Codespaces shell 命令行窗口中执行:

cd /workspaces/codespaces-blank
git clone https://zhangdeqiang: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@huggingface.co/spaces/zed5337/MyMindSearch
codespace就是本地仓库,huggingface space是远程仓库,接下来使用方法就和常规的git一样了。

cd /workspaces/codespaces-blank/MyMindSearch

把刚才准备的文件都copy进来

cp -r /workspaces/mindsearch/mindsearch_deploy/* .

把上述代码提交到huggingface space。

在这里插入图片描述
后续一样就不在多做赘述。

这篇关于【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132302

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录