大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源

2024-09-03 06:12

本文主要是介绍大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(正在更新!)

章节内容

上节完成了如下的内容:

  • DataStreamAPI介绍
  • 基于文件、Socket、基于集合
  • 编写代码进行测试
  • Kafka连接器

在这里插入图片描述

非并行源

基本介绍

在 Apache Flink 中,非并行源(Non-Parallel Source)是一种特殊的源操作(Source Operator),它的最大并行度被限制为 1。这意味着,无论 Flink 集群中有多少个 Task Manager 和 Slot,该源操作都只能在一个并行实例中运行。这通常用于处理那些不适合并行化的任务或需要集中处理的工作。

主要特点

  • 单线程执行:非并行源只能在一个线程中执行,因此不会受益于并行化带来的性能提升。适合需要顺序处理或依赖全局状态的场景。
  • 全局状态管理:因为是单线程执行,非并行源可以方便地管理全局状态,而不需要像并行源那样处理多个并行实例间的状态同步问题。
  • 实现简单:对于某些简单的数据源,如单个文件读取器、时间戳生成器等,非并行源的实现相对简单,不需要处理复杂的并行和分片逻辑。

使用场景

  • 时间戳生成:当需要在流处理作业中引入事件时间(Event Time)时,可以使用一个非并行源来生成时间戳。
  • 控制输入:如从一个全局唯一的数据源(例如一个集中式消息队列)读取数据时,通常使用非并行源来确保顺序处理。
  • 测试与调试:在开发和调试阶段,非并行源可以用于生成简单的测试数据流。

示例代码

// 创建一个非并行的自定义源
public class MyNonParallelSource implements SourceFunction<String> {private volatile boolean isRunning = true;@Overridepublic void run(SourceContext<String> ctx) throws Exception {while (isRunning) {ctx.collect("Non-Parallel Source Data");Thread.sleep(1000); // 模拟数据产生的延迟}}@Overridepublic void cancel() {isRunning = false;}
}// 在作业中使用非并行源
DataStream<String> stream = env.addSource(new MyNonParallelSource()).setParallelism(1);

在上述示例中,MyNonParallelSource 是一个简单的自定义非并行源,每秒生成一条字符串数据,并且通过 setParallelism(1) 明确指定其并行度为 1。

注意事项

  • 性能限制:由于非并行源仅在单个线程中执行,如果数据量较大或需要高吞吐量,可能成为系统的瓶颈。
  • 容错与恢复:Flink 提供了检查点机制(Checkpointing)来保证故障恢复时的状态一致性。在使用非并行源时,确保源的状态可以在故障恢复时正确重放。

NoParallelSource

package icu.wzk;import org.apache.flink.streaming.api.functions.source.SourceFunction;public class NoParallelSource implements SourceFunction<String> {private Long count = 1L;private boolean running = true;@Overridepublic void run(SourceContext<String> ctx) throws Exception {while (running) {count ++;ctx.collect(String.valueOf(count));Thread.sleep(1000);}}@Overridepublic void cancel() {running = false;}
}

NoParallelSourceTest

package icu.wzk;import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;public class NoParallelSourceTest {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> data = env.getJavaEnv().addSource(new NoParallelSource());data.print();env.execute("NoParallelSourceTest");}}

运行结果

3> 2
4> 3
5> 4
6> 5
7> 6
8> 7
1> 8
2> 9
3> 10
4> 11
5> 12
6> 13
7> 14

运行过程的截图如下所示:
在这里插入图片描述

并行源

基本介绍

在 Apache Flink 中,并行源(Parallel Source)是一种可以在多个并行实例中运行的数据源操作。这种源操作允许通过分配多个任务槽(Task Slot)来并行地读取数据,从而提高数据处理的吞吐量和性能。与非并行源相比,并行源更适合处理大规模、可分割的数据源,如分布式文件系统、消息队列、数据库分片等。

主要特点

  • 多实例执行:并行源可以通过多个并行实例执行,每个实例处理源数据的一个分片。这种架构允许利用集群中的多个计算资源,从而大大提高数据处理能力。
  • 分片处理:并行源通常会将数据源分成多个分片(shard)或分区(partition),每个分片由不同的并行实例处理。这样可以将大量的数据分摊到多个并行实例上,实现更高的处理效率。
  • 状态管理:每个并行实例通常会管理自己的状态,而不是像非并行源那样管理全局状态。Flink 提供了状态后端和检查点机制,帮助管理和恢复并行源的状态。
  • 横向扩展:由于并行源可以在多个实例中运行,因此随着集群资源的增加(例如增加 Task Manager 和 Slot 的数量),并行源的处理能力也会随之增加。

使用场景

  • 分布式文件系统读取:从 HDFS、S3 等分布式文件系统中读取数据时,通常使用并行源将文件分块并分配给不同的并行实例处理。
  • 消息队列消费:从 Kafka、RabbitMQ 等消息队列中消费消息时,通常使用并行源来同时处理多个分区的数据。
  • 数据库读取:当从分片数据库(例如 MySQL 分片、Cassandra 等)读取数据时,使用并行源可以让多个实例并行读取不同分片的数据。

示例代码

Flink 提供了一些内置的并行源,例如 KafkaSource、Flink’s FileSource 等,这里以 KafkaSource 为例:

// 使用 Flink 内置的 Kafka Source
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "flink-group");FlinkKafkaConsumer<String> kafkaSource = new FlinkKafkaConsumer<>("topic-name",new SimpleStringSchema(),properties
);// 设置 Kafka Source 的并行度
DataStream<String> stream = env.addSource(kafkaSource).setParallelism(4);

注意事项

  • 数据分区一致性:在使用并行源时,需要确保数据源可以合理分区,并且每个并行实例只处理其分配的分区数据,避免数据重复处理或遗漏。
  • 状态恢复:当并行源需要保存状态时,确保状态的正确管理,以便在故障恢复时可以正确地恢复各个并行实例的状态。
  • 负载均衡:确保各个并行实例间的负载均衡,避免某些实例过载,而其他实例闲置。

ParallelSource

package icu.wzk;import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;public class ParallelSource implements ParallelSourceFunction<String> {private long count = 1L;private boolean running = true;@Overridepublic void run(SourceContext<String> ctx) throws Exception {while (running) {count ++;ctx.collect(String.valueOf(count));Thread.sleep(1000);}}@Overridepublic void cancel() {running = false;}
}

ParallesSourceTest

package icu.wzk;import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;public class ParallelSourceTest {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> data = env.getJavaEnv().addSource(new ParallelSource());data.print();env.execute("ParallelSourceTest");}}

运行结果

可以看到运行的速度是非常快的

4> 2
5> 2
1> 2
2> 2
8> 2
3> 2
6> 2
7> 2
6> 3
5> 3
8> 3
7> 3
4> 3
3> 3
2> 3
1> 3
6> 4

运行的对应的截图如下所示:
在这里插入图片描述

这篇关于大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132253

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序