大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源

2024-09-03 06:12

本文主要是介绍大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(正在更新!)

章节内容

上节完成了如下的内容:

  • DataStreamAPI介绍
  • 基于文件、Socket、基于集合
  • 编写代码进行测试
  • Kafka连接器

在这里插入图片描述

非并行源

基本介绍

在 Apache Flink 中,非并行源(Non-Parallel Source)是一种特殊的源操作(Source Operator),它的最大并行度被限制为 1。这意味着,无论 Flink 集群中有多少个 Task Manager 和 Slot,该源操作都只能在一个并行实例中运行。这通常用于处理那些不适合并行化的任务或需要集中处理的工作。

主要特点

  • 单线程执行:非并行源只能在一个线程中执行,因此不会受益于并行化带来的性能提升。适合需要顺序处理或依赖全局状态的场景。
  • 全局状态管理:因为是单线程执行,非并行源可以方便地管理全局状态,而不需要像并行源那样处理多个并行实例间的状态同步问题。
  • 实现简单:对于某些简单的数据源,如单个文件读取器、时间戳生成器等,非并行源的实现相对简单,不需要处理复杂的并行和分片逻辑。

使用场景

  • 时间戳生成:当需要在流处理作业中引入事件时间(Event Time)时,可以使用一个非并行源来生成时间戳。
  • 控制输入:如从一个全局唯一的数据源(例如一个集中式消息队列)读取数据时,通常使用非并行源来确保顺序处理。
  • 测试与调试:在开发和调试阶段,非并行源可以用于生成简单的测试数据流。

示例代码

// 创建一个非并行的自定义源
public class MyNonParallelSource implements SourceFunction<String> {private volatile boolean isRunning = true;@Overridepublic void run(SourceContext<String> ctx) throws Exception {while (isRunning) {ctx.collect("Non-Parallel Source Data");Thread.sleep(1000); // 模拟数据产生的延迟}}@Overridepublic void cancel() {isRunning = false;}
}// 在作业中使用非并行源
DataStream<String> stream = env.addSource(new MyNonParallelSource()).setParallelism(1);

在上述示例中,MyNonParallelSource 是一个简单的自定义非并行源,每秒生成一条字符串数据,并且通过 setParallelism(1) 明确指定其并行度为 1。

注意事项

  • 性能限制:由于非并行源仅在单个线程中执行,如果数据量较大或需要高吞吐量,可能成为系统的瓶颈。
  • 容错与恢复:Flink 提供了检查点机制(Checkpointing)来保证故障恢复时的状态一致性。在使用非并行源时,确保源的状态可以在故障恢复时正确重放。

NoParallelSource

package icu.wzk;import org.apache.flink.streaming.api.functions.source.SourceFunction;public class NoParallelSource implements SourceFunction<String> {private Long count = 1L;private boolean running = true;@Overridepublic void run(SourceContext<String> ctx) throws Exception {while (running) {count ++;ctx.collect(String.valueOf(count));Thread.sleep(1000);}}@Overridepublic void cancel() {running = false;}
}

NoParallelSourceTest

package icu.wzk;import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;public class NoParallelSourceTest {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> data = env.getJavaEnv().addSource(new NoParallelSource());data.print();env.execute("NoParallelSourceTest");}}

运行结果

3> 2
4> 3
5> 4
6> 5
7> 6
8> 7
1> 8
2> 9
3> 10
4> 11
5> 12
6> 13
7> 14

运行过程的截图如下所示:
在这里插入图片描述

并行源

基本介绍

在 Apache Flink 中,并行源(Parallel Source)是一种可以在多个并行实例中运行的数据源操作。这种源操作允许通过分配多个任务槽(Task Slot)来并行地读取数据,从而提高数据处理的吞吐量和性能。与非并行源相比,并行源更适合处理大规模、可分割的数据源,如分布式文件系统、消息队列、数据库分片等。

主要特点

  • 多实例执行:并行源可以通过多个并行实例执行,每个实例处理源数据的一个分片。这种架构允许利用集群中的多个计算资源,从而大大提高数据处理能力。
  • 分片处理:并行源通常会将数据源分成多个分片(shard)或分区(partition),每个分片由不同的并行实例处理。这样可以将大量的数据分摊到多个并行实例上,实现更高的处理效率。
  • 状态管理:每个并行实例通常会管理自己的状态,而不是像非并行源那样管理全局状态。Flink 提供了状态后端和检查点机制,帮助管理和恢复并行源的状态。
  • 横向扩展:由于并行源可以在多个实例中运行,因此随着集群资源的增加(例如增加 Task Manager 和 Slot 的数量),并行源的处理能力也会随之增加。

使用场景

  • 分布式文件系统读取:从 HDFS、S3 等分布式文件系统中读取数据时,通常使用并行源将文件分块并分配给不同的并行实例处理。
  • 消息队列消费:从 Kafka、RabbitMQ 等消息队列中消费消息时,通常使用并行源来同时处理多个分区的数据。
  • 数据库读取:当从分片数据库(例如 MySQL 分片、Cassandra 等)读取数据时,使用并行源可以让多个实例并行读取不同分片的数据。

示例代码

Flink 提供了一些内置的并行源,例如 KafkaSource、Flink’s FileSource 等,这里以 KafkaSource 为例:

// 使用 Flink 内置的 Kafka Source
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "flink-group");FlinkKafkaConsumer<String> kafkaSource = new FlinkKafkaConsumer<>("topic-name",new SimpleStringSchema(),properties
);// 设置 Kafka Source 的并行度
DataStream<String> stream = env.addSource(kafkaSource).setParallelism(4);

注意事项

  • 数据分区一致性:在使用并行源时,需要确保数据源可以合理分区,并且每个并行实例只处理其分配的分区数据,避免数据重复处理或遗漏。
  • 状态恢复:当并行源需要保存状态时,确保状态的正确管理,以便在故障恢复时可以正确地恢复各个并行实例的状态。
  • 负载均衡:确保各个并行实例间的负载均衡,避免某些实例过载,而其他实例闲置。

ParallelSource

package icu.wzk;import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;public class ParallelSource implements ParallelSourceFunction<String> {private long count = 1L;private boolean running = true;@Overridepublic void run(SourceContext<String> ctx) throws Exception {while (running) {count ++;ctx.collect(String.valueOf(count));Thread.sleep(1000);}}@Overridepublic void cancel() {running = false;}
}

ParallesSourceTest

package icu.wzk;import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;public class ParallelSourceTest {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> data = env.getJavaEnv().addSource(new ParallelSource());data.print();env.execute("ParallelSourceTest");}}

运行结果

可以看到运行的速度是非常快的

4> 2
5> 2
1> 2
2> 2
8> 2
3> 2
6> 2
7> 2
6> 3
5> 3
8> 3
7> 3
4> 3
3> 3
2> 3
1> 3
6> 4

运行的对应的截图如下所示:
在这里插入图片描述

这篇关于大数据-113 Flink DataStreamAPI 程序输入源 自定义输入源 非并行源与并行源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132253

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

如何自定义一个log适配器starter

《如何自定义一个log适配器starter》:本文主要介绍如何自定义一个log适配器starter的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求Starter 项目目录结构pom.XML 配置LogInitializer实现MDCInterceptor

SpringBoot整合Apache Flink的详细指南

《SpringBoot整合ApacheFlink的详细指南》这篇文章主要为大家详细介绍了SpringBoot整合ApacheFlink的详细过程,涵盖环境准备,依赖配置,代码实现及运行步骤,感兴趣的... 目录1. 背景与目标2. 环境准备2.1 开发工具2.2 技术版本3. 创建 Spring Boot

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Ubuntu设置程序开机自启动的操作步骤

《Ubuntu设置程序开机自启动的操作步骤》在部署程序到边缘端时,我们总希望可以通电即启动我们写好的程序,本篇博客用以记录如何在ubuntu开机执行某条命令或者某个可执行程序,需要的朋友可以参考下... 目录1、概述2、图形界面设置3、设置为Systemd服务1、概述测试环境:Ubuntu22.04 带图

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据