MiniMax:如何基于 JuiceFS 构建高性能、低成本的大模型 AI 平台

2024-09-03 02:52

本文主要是介绍MiniMax:如何基于 JuiceFS 构建高性能、低成本的大模型 AI 平台,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MiniMax 成立于 2021 年 12 月,是领先的通用人工智能科技公司,致力于与用户共创智能。MiniMax 自主研发了不同模态的通用大模型,其中包括万亿参数的 MoE 文本大模型、语音大模型以及图像大模型。
基于不同模态的通用大模型,MiniMax 推出生产力工具 “海螺 AI” 、沉浸式 AI 内容社区 “星野” 等原生应用。MiniMax 开放平台为企业和开发者提供安全、灵活、可靠的 API 服务,助力快速搭建 AI 应用。

01 多模态大模型研发的存储挑战

作为一家初创公司,MiniMax 在构建基础设施时主要关注灵活性和成本效率。因此,公司选择在本地数据中心部署关键负载(如 GPU 资源),其它源则部署于云端,以便能够利用云平台的技术优势、弹性和灵活性。由此,MiniMax 采纳了结合本地数据中心与多云环境的混合云方案。鉴于底层基础设施的复杂性和管理挑战,公司采用 Kubernetes 作为基础设施的统一管理层。

存储层作为基础设施平台的关键组成部分,面临挑战主要如下:

  • 高性能:大模型的训练和推理需要处理和存储海量的数据,这不仅要求有高容量的存储解决方案,还需要保证数据的快速读写;
  • POSIX 兼容性:深度学习框架和算法工程师的日常工作都是基于 POSIX 接口,这就要求存储系统必须完全兼容 POSIX,否则会使得 AI 任务无法正常运行;
  • 混合云架构:计算资源,尤其是 GPU,分布在不同的地理区域以及由不同的服务商提供。为了让计算任务可以高效调度,存储系统需要可适用于各种服务商和硬件环境的方案,且具备高度的灵活性,支持跨区域的数据复制、访问和迁移;
  • 存储成本优化:随着数据量的不断增加,尤其是在大数据和 AI 应用领域,扩展存储容量的同时能够有效控制成本成为一大挑战。企业需要采用成本效益高的存储技术,同时确保这些技术能够与现有的 IT 架构无缝集成。

02 为什么选择 JuiceFS 企业版?

初期进行选型时,MiniMax 调研过 CephFS,它在元数据服务方面存在一些瓶颈。同时,MiniMax 也尝试过一些公有云服务的高性能文件存储方案,但最终由于成本过高而放弃。MiniMax 希望能够使用一种既具有足够灵活性和高度可扩展性,同时也能解决成本问题,以及可满足混合云架构的存储系统。

最终, MiniMax 选择了 JuiceFS 企业版作为公司级 AI 平台的存储底座,支持上层各类模型(包括文本大模型、语音大模型、图像大模型、多模态模型)在数据清洗、模型训练、模型推理等场景上的高性能数据访问需求。特别是在超大规模 GPU 集群分布式训练场景中,JuiceFS 优异的表现为模型迭代和 GPU 利用率的提升起到了关键作用。

  • 兼容性:支持 POSIX、HDFS 和 S3 接口,提供统一的存储方案以减少数据拷贝和迁移;
  • 优化 I/O 效率:通过多级缓存、预读和并发读取策略显著提升 I/O 性能;
  • 高性能元数据服务:自研的元数据服务能够处理每秒上百万的请求,响应时间在亚毫秒级,满足 AI 训练各阶段的严苛要求;
  • 多云/混合云数据管理:自动跨云和跨区域的数据复制,确保数据随计算迁移而自动同步,适合全球分布的计算需求;
  • 成本低:JuiceFS 通过其基于对象存储的设计显著降低了数据存储成本,使 MiniMax 能够利用成本效益高的对象存储。此外,JuiceFS 的简便运维也有助于降低 MiniMax 的总体成本。

03 混合云架构下,如何基于 JuiceFS 构建统一的存储系统?

最初,MiniMax 主要面临频繁的读操作需求,而写操作相对较少。为此,公司采用了 JuiceFS 的分布式缓存功能,使用 NVMe 全闪存加速读取操作。随着数据处理需求和集群建设的扩大,单个集群的能力已不足以满足 MiniMax 的需求。因此,MiniMax 基于 JuiceFS 构建了一个中心化的元数据分发引擎和一个能进行高速读写操作的边缘集群架构。

MiniMax 使用 JuiceFS 的镜像文件系统功能,将中心集群的元数据自动复制到各个边缘集群。边缘集群不存储实际数据,而是通过专线从中心集群预热数据到 JuiceFS 的分布式缓存,利用高性能的缓存集群提高读带宽并减少数据重复存储。

此外,数据也可以按需下载到边缘的 JuiceFS 集群,并由上层服务进行生命周期管理。

基于这个统一存储系统,MiniMax 建设了一张覆盖全国的大型环网,并将部分城市作为核心接入点。同时,在各 IDC 机房内近距离连接到这些接入点,以支持高效的数据分发。

“ JuiceFS 不仅提供了适应我们混合云需求的存储系统,还通过高性能元数据服务和多接口兼容性优化了数据处理流程,显著降低了运维成本,是我们运营大模型平台的理想选择。”

—— 星龙,MiniMax 技术总监

这篇关于MiniMax:如何基于 JuiceFS 构建高性能、低成本的大模型 AI 平台的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131820

相关文章

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel