代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II

2024-09-03 01:12

本文主要是介绍代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

62.不同路径

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

思路:

这个问题可以通过动态规划来解决。我们可以使用一个二维数组 dp 来保存从起点到达每个格子的路径数量。

动态规划思路:

  1. 定义状态:

    • dp[i][j] 为从起点 (0,0) 到达格子 (i,j) 的路径数。
  2. 状态转移方程:

    • 机器人每次只能向下或者向右移动一步,所以到达 dp[i][j] 的路径数等于从上方格子 dp[i-1][j] 到达的路径数与从左方格子 dp[i][j-1] 到达的路径数之和,即: dp[i][j]=dp[i−1][j]+dp[i][j−1]dp[i][j] = dp[i-1][j] + dp[i][j-1]dp[i][j]=dp[i−1][j]+dp[i][j−1]
  3. 初始条件:

    • 起点 dp[0][0] 的路径数为 1,因为机器人从起点开始,所以路径数为 1。
    • 第一行和第一列的路径数也应该初始化,因为在这些位置上,机器人只能从左到右(对于第一行)或者从上到下(对于第一列)移动,因此:
      • 对于第一行(i = 0),dp[0][j] = 1(因为机器人只能一直向右移动)。
      • 对于第一列(j = 0),dp[i][0] = 1(因为机器人只能一直向下移动)。
  4. 计算路径数:

    • 我们可以从左上角 (0,0) 开始,通过状态转移方程计算出每个格子的路径数,最终 dp[m-1][n-1] 就是我们要的答案。

上代码:

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));// 初始化第一行和第一列for (int i = 0; i < m; ++i) {dp[i][0] = 1;}for (int j = 0; j < n; ++j) {dp[0][j] = 1;}// 填充dp数组for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
};

 63. 不同路径 II 

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路:

要解决这个问题,我们可以使用动态规划方法。与之前的没有障碍物的路径问题类似,但需要考虑障碍物的存在。

动态规划思路:

  1. 定义状态:

    • dp[i][j] 为从起点 (0,0) 到达格子 (i,j) 的路径数。
    • 如果 obstacleGrid[i][j] == 1,说明该格子为障碍物,不可通行,则 dp[i][j] = 0
    • 否则,路径数为从上方格子 dp[i-1][j] 和左方格子 dp[i][j-1] 到达的路径数之和。
  2. 状态转移方程:

    dp[i][j]=obstacleGrid[i][j]==1?0:dp[i−1][j]+dp[i][j−1]dp[i][j] = \text{obstacleGrid}[i][j] == 1 ? 0 : dp[i-1][j] + dp[i][j-1]dp[i][j]=obstacleGrid[i][j]==1?0:dp[i−1][j]+dp[i][j−1]
  3. 初始条件:

    • 起点 dp[0][0] 的路径数为 1,但如果起点本身是障碍物,则 dp[0][0] = 0
    • 第一行和第一列的路径数需要特别处理,因为只能从一个方向到达:
      • 对于第一行(i = 0),如果当前格子及其左侧没有障碍物,则路径数为 1,否则为 0。
      • 对于第一列(j = 0),如果当前格子及其上方没有障碍物,则路径数为 1,否则为 0。
  4. 计算路径数:

    • 从左上角开始,通过状态转移方程计算出每个格子的路径数,最终 dp[m-1][n-1] 就是我们要的答案。

上代码:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();// 如果起点有障碍物,直接返回 0if (obstacleGrid[0][0] == 1) return 0;vector<vector<int>> dp(m, vector<int>(n, 0));// 初始化起点dp[0][0] = 1;// 初始化第一列for (int i = 1; i < m; ++i) {dp[i][0] = (obstacleGrid[i][0] == 0 && dp[i-1][0] == 1) ? 1 : 0;}// 初始化第一行for (int j = 1; j < n; ++j) {dp[0][j] = (obstacleGrid[0][j] == 0 && dp[0][j-1] == 1) ? 1 : 0;}// 填充dp数组for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {if (obstacleGrid[i][j] == 0) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}return dp[m-1][n-1];}
};

这篇关于代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131602

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键