代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II

2024-09-03 01:12

本文主要是介绍代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

62.不同路径

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

思路:

这个问题可以通过动态规划来解决。我们可以使用一个二维数组 dp 来保存从起点到达每个格子的路径数量。

动态规划思路:

  1. 定义状态:

    • dp[i][j] 为从起点 (0,0) 到达格子 (i,j) 的路径数。
  2. 状态转移方程:

    • 机器人每次只能向下或者向右移动一步,所以到达 dp[i][j] 的路径数等于从上方格子 dp[i-1][j] 到达的路径数与从左方格子 dp[i][j-1] 到达的路径数之和,即: dp[i][j]=dp[i−1][j]+dp[i][j−1]dp[i][j] = dp[i-1][j] + dp[i][j-1]dp[i][j]=dp[i−1][j]+dp[i][j−1]
  3. 初始条件:

    • 起点 dp[0][0] 的路径数为 1,因为机器人从起点开始,所以路径数为 1。
    • 第一行和第一列的路径数也应该初始化,因为在这些位置上,机器人只能从左到右(对于第一行)或者从上到下(对于第一列)移动,因此:
      • 对于第一行(i = 0),dp[0][j] = 1(因为机器人只能一直向右移动)。
      • 对于第一列(j = 0),dp[i][0] = 1(因为机器人只能一直向下移动)。
  4. 计算路径数:

    • 我们可以从左上角 (0,0) 开始,通过状态转移方程计算出每个格子的路径数,最终 dp[m-1][n-1] 就是我们要的答案。

上代码:

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));// 初始化第一行和第一列for (int i = 0; i < m; ++i) {dp[i][0] = 1;}for (int j = 0; j < n; ++j) {dp[0][j] = 1;}// 填充dp数组for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}return dp[m-1][n-1];}
};

 63. 不同路径 II 

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路:

要解决这个问题,我们可以使用动态规划方法。与之前的没有障碍物的路径问题类似,但需要考虑障碍物的存在。

动态规划思路:

  1. 定义状态:

    • dp[i][j] 为从起点 (0,0) 到达格子 (i,j) 的路径数。
    • 如果 obstacleGrid[i][j] == 1,说明该格子为障碍物,不可通行,则 dp[i][j] = 0
    • 否则,路径数为从上方格子 dp[i-1][j] 和左方格子 dp[i][j-1] 到达的路径数之和。
  2. 状态转移方程:

    dp[i][j]=obstacleGrid[i][j]==1?0:dp[i−1][j]+dp[i][j−1]dp[i][j] = \text{obstacleGrid}[i][j] == 1 ? 0 : dp[i-1][j] + dp[i][j-1]dp[i][j]=obstacleGrid[i][j]==1?0:dp[i−1][j]+dp[i][j−1]
  3. 初始条件:

    • 起点 dp[0][0] 的路径数为 1,但如果起点本身是障碍物,则 dp[0][0] = 0
    • 第一行和第一列的路径数需要特别处理,因为只能从一个方向到达:
      • 对于第一行(i = 0),如果当前格子及其左侧没有障碍物,则路径数为 1,否则为 0。
      • 对于第一列(j = 0),如果当前格子及其上方没有障碍物,则路径数为 1,否则为 0。
  4. 计算路径数:

    • 从左上角开始,通过状态转移方程计算出每个格子的路径数,最终 dp[m-1][n-1] 就是我们要的答案。

上代码:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();// 如果起点有障碍物,直接返回 0if (obstacleGrid[0][0] == 1) return 0;vector<vector<int>> dp(m, vector<int>(n, 0));// 初始化起点dp[0][0] = 1;// 初始化第一列for (int i = 1; i < m; ++i) {dp[i][0] = (obstacleGrid[i][0] == 0 && dp[i-1][0] == 1) ? 1 : 0;}// 初始化第一行for (int j = 1; j < n; ++j) {dp[0][j] = (obstacleGrid[0][j] == 0 && dp[0][j-1] == 1) ? 1 : 0;}// 填充dp数组for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {if (obstacleGrid[i][j] == 0) {dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}return dp[m-1][n-1];}
};

这篇关于代码随想录算法训练营第三十四天| 62.不同路径 63. 不同路径 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131602

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill