Python从0到100(五十七):机器学习-主成分分析机

2024-09-03 01:12

本文主要是介绍Python从0到100(五十七):机器学习-主成分分析机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主成分分析是⼀种常⽤的降维技术,⽤于将⾼维数据集投影到低维空间中,同时保留数据集的主要特征。PCA通过寻找数据中最重要的⽅向(主成分),并将数据投影到这些⽅向上来实现降维。

1.基本原理

1、数据中心化:⾸先,对原始数据进⾏中⼼化处理,即将每个特征的均值减去每个数据点的对应特征值,以确保数据的均值为零。
2、协方差矩阵:然后,计算数据的协⽅差矩阵,该矩阵表示了不同特征之间的关联性。
3、特征值分解:对协⽅差矩阵进⾏特征值分解,找到其特征值和特征向量。
4、选择主成分:选择具有最⼤特征值的特征向量,这些特征向量构成了数据在低维⼦空间上的新坐标轴,被称为主成分。
5、投影:将原始数据投影到所选的主成分上,从⽽实现数据的降维。

2.公式模型

1、数据中⼼化:对于⼀个包含m个样本和n个特征的数据矩阵 ,⾸先计算每个特征的均值 ,然后进⾏中⼼化处理,得到中⼼化的数据矩阵 :
在这里插入图片描述
2、协方差矩阵:计算中⼼化数据的协⽅差矩阵C ,m其中 是样本数:
在这里插入图片描述

3、特征值分解:对协⽅差矩阵C进⾏特征值分解,得到特征值y1,y2,...,yn和对应的特征向量v1,v2,...,vn。特征向量vi代表数据在新的主成分⽅向上的投影。
4、选择主成分:通常,选择前k个特征值对应的特征向量,它们构成了数据的主成分。这些特征向量通常按照特征值的大小降序排列。
5、投影:将原始数据矩阵X投影到所选的主成分上,得到降维后的数据矩阵Y
Y=VX
其中,V 是包含选定主成分特征向量的矩阵。
通过PCA,可以将⾼维数据映射到低维空间,从⽽减少了数据的维度。这有助于数据可视化、去除冗余特征、加速机器学习模型的训练,并提⾼模型的泛化性能。选择合适的降维维度(主成分数量)是PCA的⼀个关键参数,通常需要根据问题和性能需求进⾏调整。

3.优缺点

优点:
1. 降低数据维度:PCA能够将⾼维数据降维到较低维度,减少数据存储和计算成本。
2. 保留数据主要特征:PCA通过保留数据集中⽅差最⼤的⽅向,尽可能地保留了数据的主要特征。
3. 减少数据噪⾳:PCA可以将数据投影到主成分上,减少数据中的噪⾳和冗余信息。

缺点:

1. 对线性关系敏感:PCA假设数据是线性相关的,对⾮线性关系的数据降维效果可能不佳。
6. 可解释性差:PCA得到的主成分通常难以解释其含义,因为它是数据的线性组合。
7. 对异常值敏感:PCA对异常值较为敏感,可能会影响主成分的计算结果。

4.适用场景

主成分分析适⽤于以下场景:

  1. 数据维度较⾼:当数据维度较⾼时,可以使⽤PCA将数据降维到较低维度。
  2. 数据存在多重共线性:当数据中存在多重共线性(即特征之间存在线性相关性)时,PCA可以减少特征之间
    的冗余信息。
  3. 数据可视化:PCA可以将⾼维数据可视化到⼆维或三维空间中,帮助⼈们理解数据的结构和特征。

主成分分析可以帮助我们减少数据的维度并保留数据的主要特征。然⽽,在使⽤PCA时需要注意数据的线性关系和异常值的影响

5.手写数字识别数据集主成分分析

使⽤⼿写数字识别数据集(MNIST dataset)进⾏主成分分析,并展示降维后的数据可视化结果:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
# 加载⼿写数字识别数据集
digits = load_digits()
X = digits.data
y = digits.target
# 构建PCA模型并拟合数据
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
# 可视化降维后的数据
plt.figure(figsize=(10, 8))
scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis', s=20, alpha=0.7)
plt.colorbar(scatter)
plt.title('2D PCA Visualization of MNIST Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()

⾸先加载了⼿写数字识别数据集,并使⽤PCA将数据降维到2维空间。然后绘制降维后的数据的散点图,其中每个点代表⼀个⼿写数字样本,不同颜⾊代表不同的数字类别。
在这里插入图片描述

这篇关于Python从0到100(五十七):机器学习-主成分分析机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131601

相关文章

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho