【python因果推断库2】使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析

本文主要是介绍【python因果推断库2】使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析

导入数据

分析

使用 PyMC 模型建模银行业数据集

导入数据

 分析 1 - 经典 2×2 差分-in-差分 (DiD)

分析 2 - 具有多个干预前后观测值的差分-in-差分 (DiD) 分析 


 使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析

import arviz as azimport causalpy as cp
%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = 'retina'
seed = 42

导入数据

df = cp.load_data("did")
df.head()

分析

`random_seed` 这个关键词参数对于 PyMC 采样器来说并不是必需的。我们在这里使用它是为了确保结果是可以重现的。

result = cp.pymc_experiments.DifferenceInDifferences(df,formula="y ~ 1 + group*post_treatment",time_variable_name="t",group_variable_name="group",model=cp.pymc_models.LinearRegression(sample_kwargs={"random_seed": seed}),
)
fig, ax = result.plot()

result.summary()
===========================Difference in Differences============================
Formula: y ~ 1 + group*post_treatmentResults:
Causal impact = 0.5, $CI_{94\%}$[0.4, 0.6]
Model coefficients:Intercept                   	1.1, 94% HDI [1, 1.1]post_treatment[T.True]      	0.99, 94% HDI [0.92, 1.1]group                       	0.16, 94% HDI [0.094, 0.23]group:post_treatment[T.True]	0.5, 94% HDI [0.4, 0.6]sigma                       	0.082, 94% HDI [0.066, 0.1]
ax = az.plot_posterior(result.causal_impact, ref_val=0)
ax.set(title="Posterior estimate of causal impact");

使用 PyMC 模型建模银行业数据集

本笔记本分析了来自 Richardson (2009) 的历史银行业关闭数据,并将其作为差分-in-差分分析的一个案例研究,该案例研究来源于优秀的书籍《Mastering Metrics》(Angrist 和 Pischke, 2014)。在这里,我们复制了这项分析,但是使用了贝叶斯推断的方法。

import arviz as az
import pandas as pdimport causalpy as cp
%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = 'retina'
seed = 42

导入数据

原始数据集包含一个日期列,这个列中的数字无法直接解读——对于我们分析而言只需要年份列。数据集中还有 `bib6`, `bio6`, `bib8`, `bio8` 这几列。我们知道数字 6 和 8 分别代表第 6 和第 8 联邦储备区。我假设 `bib` 表示“营业中的银行”,所以我们保留这些列。数据是以天为单位的,但我们将把它转换成年为单位。从 Angrist 和 Pischke (2014) 一书中的图 5.2 来看,他们似乎展示了每年营业银行数量的中位数。现在让我们加载数据并执行这些步骤。

df = (cp.load_data("banks")# just keep columns we want.filter(items=["bib6", "bib8", "year"])# rename to meaningful variables.rename(columns={"bib6": "Sixth District", "bib8": "Eighth District"})# reduce from daily resolution to examine median banks open by year.groupby("year").median()
)treatment_time = 1930.5# set treatment time to zero
df.index = df.index - treatment_time
treatment_time = 0
ax = df[["Sixth District", "Eighth District"]].plot(style="o-")
ax.set(ylabel="Number of banks in business")
ax.axvline(x=treatment_time, c="r", lw=3, label="intervention")
ax.legend();

让我们可视化我们现在得到的数据。这与 Angrist 和 Pischke (2014) 一书中的图 5.2 完全匹配。 

只需几个最后的数据处理步骤,就可以使数据适合于分析。我们将把数据从宽格式转换为长格式。然后我们将添加一个新的列 `treated`,用来指示已经实施处理的观测值。 

df.reset_index(level=0, inplace=True)
df_long = pd.melt(df,id_vars=["year"],value_vars=["Sixth District", "Eighth District"],var_name="district",value_name="bib",
).sort_values("year")# We also need to create a column called `unit` which labels each distinct
# unit. In our case we just have two treatment units (each district). So
# we can build a `unit` column from `district`.
df_long["unit"] = df_long["district"]# We also need to create a `post_treatment` column to define times after
# the intervention.
df_long["post_treatment"] = df_long.year >= treatment_time
df_long# Dummy coding for district
df_long = df_long.replace({"district": {"Sixth District": 1, "Eighth District": 0}})
df_long

 分析 1 - 经典 2×2 差分-in-差分 (DiD)

首先,我们只分析 1930 年和 1931 年的数据。这样我们就只有一个干预前的测量和一个干预后的测量。

我们将使用公式:`bib ~ 1 + district * post_treatment`,这等价于以下的期望值模型:\begin{aligned}\mu_{i}&=\beta_0\\&+\beta_d\cdot district_i\\&+\beta_p\cdot post\textit{ treatment}_i\\&+\beta_\Delta\cdot district_i\cdot\textit{post treatment}_i\end{aligned}

让我们逐一理解这些内容:

- \mu_{i} 是第 i个观测值的结果(营业中的银行数量)的期望值。
- \beta_{0} 是一个截距项,用来捕捉对照组在干预前营业中银行的基础数量。
- `district` 是一个虚拟变量,所以 \beta_{d} 将代表地区的主要效应,即相对于对照组,处理组的任何偏移量。
- `post_treatment` 也是一个虚拟变量,用来捕捉无论是否接受处理,在处理时间之后结果的任何变化。
- 两个虚拟变量的交互作用 `district:post_treatment` 只会在干预后处理组中取值为 1。因此,\beta_{\Delta} 将代表我们估计的因果效应。

result1 = cp.pymc_experiments.DifferenceInDifferences(df_long[df_long.year.isin([-0.5, 0.5])],formula="bib ~ 1 + district * post_treatment",time_variable_name="post_treatment",group_variable_name="district",model=cp.pymc_models.LinearRegression(sample_kwargs={"target_accept": 0.98, "random_seed": seed}),
)

这里我们遇到了一些发散的情况,这是不好的迹象。这很可能与我们只有4个数据点却有5个参数有关。这对于贝叶斯分析来说并不总是致命的(因为我们有先验分布),不过当我们遇到发散的样本时,这确实是一个警告信号。

使用下面的代码,我们可以看到我们遇到了经典的“漏斗问题”,因为当采样器探索测量误差(即 σ 参数)接近零的值时出现了发散。

az.plot_pair(result1.idata, var_names="~mu", divergences=True);

为了进行“正规”的工作,我们需要解决这些问题以避免出现发散情况,例如,可以尝试探索不同的 σ 参数的先验分布。

fig, ax = result1.plot(round_to=3)

result1.summary()
===========================Difference in Differences============================
Formula: bib ~ 1 + district * post_treatmentResults:
Causal impact = 19, $CI_{94\%}$[15, 22]
Model coefficients:Intercept                      	165, 94% HDI [163, 167]post_treatment[T.True]         	-33, 94% HDI [-36, -30]district                       	-30, 94% HDI [-32, -27]district:post_treatment[T.True]	19, 94% HDI [15, 22]sigma                          	0.84, 94% HDI [0.085, 2.2]
ax = az.plot_posterior(result1.causal_impact, ref_val=0, round_to=3)
ax.set(title="Posterior estimate of causal impact");

分析 2 - 具有多个干预前后观测值的差分-in-差分 (DiD) 分析 

现在我们将对整个数据集进行差分-in-差分分析。这种方法与{术语}CITS(比较性中断时间序列)具有相似之处,其中涉及单个对照组随时间的变化。虽然这种区分稍微有些武断,但我们根据是否有足够的时间序列数据让CITS能够捕捉时间序列模式来区别这两种技术。

我们将使用公式:`bib ~ 1 + year + district*post_treatment`,这等价于以下的期望值模型:

\begin{aligned} \mu_{i}=& =\beta_{0} \\ &+\beta_y\cdot year_i \\ &+\beta_d\cdot district_i \\ &+\beta_p\cdot post treatment_i \\ &+\beta_\Delta\cdot district_i\cdot post treatment_i \end{aligned}

与上面的经典 2×2 差分-in-差分模型相比,这里唯一的改变是增加了年份的主要效应。因为年份是数值编码的(而不是分类编码),它可以捕捉结果变量随时间发生的任何线性变化。

result2 = cp.pymc_experiments.DifferenceInDifferences(df_long,formula="bib ~ 1 + year + district*post_treatment",time_variable_name="year",group_variable_name="district",model=cp.pymc_models.LinearRegression(sample_kwargs={"target_accept": 0.95, "random_seed": seed}),
)
fig, ax = result2.plot(round_to=3)

result2.summary()
===========================Difference in Differences============================
Formula: bib ~ 1 + year + district*post_treatmentResults:
Causal impact = 20, $CI_{94\%}$[15, 26]
Model coefficients:Intercept                      	160, 94% HDI [157, 164]post_treatment[T.True]         	-28, 94% HDI [-33, -22]year                           	-7.1, 94% HDI [-8.5, -5.7]district                       	-29, 94% HDI [-34, -24]district:post_treatment[T.True]	20, 94% HDI [15, 26]sigma                          	2.4, 94% HDI [1.7, 3.2]

通过观察交互项,它可以捕捉干预措施的因果影响,我们可以看出干预似乎挽救了大约20家银行。尽管对此存在一定的不确定性,但我们可以在下方看到这一影响的完整后验估计。

ax = az.plot_posterior(result2.causal_impact, ref_val=0, round_to=3)
ax.set(title="Posterior estimate of causal impact");

这篇关于【python因果推断库2】使用 PyMC 模型进行差分-in-差分(Difference in Differences, DID)分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131524

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.