基于示例详细讲解模型PTQ量化的步骤(含代码)

2024-09-02 13:28

本文主要是介绍基于示例详细讲解模型PTQ量化的步骤(含代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

详细探讨模型PTQ量化每个步骤,涉及更多的技术细节和实际计算方法,以便更好地理解PTQ(Post-Training Quantization,训练后量化)的全过程。

1. 模型训练

我们假设已经训练了一个卷积神经网络(CNN),例如VGG-16。训练完成后,我们得到了一个以32位浮点数表示的模型权重和激活值。

2. 收集统计信息

在量化之前,我们需要从模型中收集统计信息,以帮助确定量化的参数。

收集权重和激活的统计信息

1. 权重统计

对于每个卷积层和全连接层:

  • 最大值和最小值:通过遍历模型的每个权重矩阵,计算权重的最大值和最小值。

    import numpy as npdef get_weight_stats(weights):max_val = np.max(weights)min_val = np.min(weights)return max_val, min_val
    
  • 示例

    weights_conv1 = model.conv1.weight.data.numpy()  # 获取卷积层1的权重
    max_weight_conv1, min_weight_conv1 = get_weight_stats(weights_conv1)
    

2. 激活统计

激活值的统计信息通常在校准过程中收集:

  • 最大值和最小值:将校准数据集通过模型,记录每个层的激活值的统计信息。

    def get_activation_stats(model, dataloader):activations = []for inputs, _ in dataloader:outputs = model(inputs)activations.append(outputs.detach().numpy())max_activation = np.max(activations)min_activation = np.min(activations)return max_activation, min_activation
    
  • 示例

    max_activation, min_activation = get_activation_stats(model, calibration_dataloader)
    

3. 选择量化方案

根据收集到的统计数据,选择量化方案并计算量化参数。

选择量化位宽
  • 通常选择8位整数(INT8),即量化到[-128, 127]范围内。
计算量化参数

1. 对称量化

对于权重:

  • 计算缩放因子

    def calculate_scale(min_val, max_val, int_min, int_max):scale = (max_val - min_val) / (int_max - int_min)return scale
    
  • 量化公式

    def quantize_weight(weights, scale, int_min, int_max):quantized_weights = np.clip(np.round(weights / scale), int_min, int_max)return quantized_weights
    
  • 示例

    scale_weight = calculate_scale(min_weight_conv1, max_weight_conv1, -128, 127)
    quantized_weights_conv1 = quantize_weight(weights_conv1, scale_weight, -128, 127)
    

2. 非对称量化

对于激活值:

  • 计算缩放因子和零点

    def calculate_activation_params(min_val, max_val, int_min, int_max):scale = (max_val - min_val) / (int_max - int_min)zero_point = int_min - np.round(min_val / scale)return scale, zero_point
    
  • 量化公式

    def quantize_activation(activations, scale, zero_point, int_min, int_max):quantized_activations = np.clip(np.round(activations / scale) + zero_point, int_min, int_max)return quantized_activations
    
  • 示例

    scale_activation, zero_point = calculate_activation_params(min_activation, max_activation, 0, 255)
    quantized_activations = quantize_activation(activation_data, scale_activation, zero_point, 0, 255)
    

4. 量化权重

权重量化步骤:

  1. 计算缩放因子

    scale = calculate_scale(min_weight, max_weight, -128, 127)
    
  2. 应用量化公式

    quantized_weights = quantize_weight(weights, scale, -128, 127)
    
  3. 存储量化参数

    保存量化的缩放因子和偏移量,这在推理阶段用于反量化。

    np.save('quantized_weights.npy', quantized_weights)
    np.save('weight_scale.npy', scale)
    

5. 量化激活

激活量化步骤:

  1. 计算激活的缩放因子和零点

    scale, zero_point = calculate_activation_params(min_activation, max_activation, 0, 255)
    
  2. 应用量化公式

    quantized_activations = quantize_activation(activations, scale, zero_point, 0, 255)
    
  3. 存储量化参数

    保存激活的量化参数,用于反量化。

    np.save('activation_scale.npy', scale)
    np.save('activation_zero_point.npy', zero_point)
    

6. 模型校准

微调(Fine-Tuning)

  • 步骤

    • 将量化后的模型加载并用量化参数初始化。
    • 用量化后的模型和校准数据集进行轻微的训练,以优化量化效果。
    from torch.optim import Adam# 定义优化器和损失函数
    optimizer = Adam(model.parameters(), lr=1e-5)
    criterion = torch.nn.CrossEntropyLoss()# 轻微训练
    model.train()
    for epoch in range(1):for inputs, targets in calibration_dataloader:optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, targets)loss.backward()optimizer.step()
    

7. 验证和评估

步骤

  1. 测试量化模型

    • 使用测试数据集对量化后的模型进行评估,比较其与原始浮点模型的性能。
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():for inputs, targets in test_dataloader:outputs = model(inputs)_, predicted = torch.max(outputs, 1)total += targets.size(0)correct += (predicted == targets).sum().item()accuracy = correct / total
    print(f'Test Accuracy: {accuracy * 100:.2f}%')
    
  2. 分析结果

    • 比较量化模型和原始浮点模型的准确率,确定量化对模型性能的影响。
    • 如果量化后性能下降明显,可能需要调整量化参数或进行进一步微调。

8. PTQ的优点和挑战

优点:

无需重新训练:PTQ不需要重新训练模型,只需在现有模型上进行量化,节省了时间和计算资源。
快速部署:量化后的模型可以更快地在资源受限的环境中部署,例如移动设备和嵌入式系统。
减少存储需求和计算复杂度:低精度表示减少了存储空间和计算开销,适合在硬件上加速计算。
挑战:

精度损失:量化可能导致模型性能下降,特别是当量化精度较低时。需要进行模型校准和评估来减小精度损失。
选择合适的量化参数:确定量化的位宽、范围和其他参数可能需要经验和实验来优化。
数据分布问题:如果数据分布非常复杂,简单的量化策略可能无法有效地捕捉数据的特性,导致精度损失。

总结

通过上述详细步骤,我们对一个训练好的CNN模型进行了PTQ。详细步骤包括从模型中收集统计信息、选择和计算量化参数、应用量化到权重和激活、进行模型校准以及最终的模型验证和评估。每个步骤涉及具体的计算和调整,以确保量化过程中的模型性能尽可能接近原始浮点模型。

这篇关于基于示例详细讲解模型PTQ量化的步骤(含代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130084

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模