大数据修炼之Zookeeper

2024-09-02 12:32
文章标签 数据 修炼 zookeeper

本文主要是介绍大数据修炼之Zookeeper,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概述
  • 原理
  • 客户端命令
  • 节点
  • 集群
  • 分布式锁实现

https://zookeeper.apache.org/

概述

分布式系统资源协调服务中间件。

从设计模式角度看,zk是一个基于观察者设计模式的分布式服务管理框架,接受观察者注册,负责储存管理关心的数据,接受观察者注册。

zk=文件系统+通知机制

特点:

  • 一致性,最终一致性
  • 原子性
  • 单一视图,无论是连到哪个节点,数据是一致的
  • 可靠性: 每次操作都会保存到数据库,每个server保存一份相同的数据副本
  • 更新请求顺序进行,来此同一个client的更新按其发送顺序依次执行。
  • 实时性,在一定时间范围内,client能读到最新的数据
    在这里插入图片描述
    数据模型的结构整体可以看作是一个树,每个节点称作ZNode,每个znode默认存储1MB数据,每个ZNode都可以存储数据。

应用场景:

  1. 数据发布订阅,集中式配置中心(推拉)
    在这里插入图片描述
  2. 软负载均衡 https://blog.csdn.net/autfish/article/details/51576695
    在这里插入图片描述
  3. 集群管理: 多少机器在工作,每台机器的运行状态,集中上线下操作,分布式任务状态汇报。

原理

分布式一致性协议介绍(Paxos、Raft)
在这里插入图片描述

客户端命令

bin/zkCli.sh -server 127.0.0.1:2181

ZooKeeper -server host:port cmd args
addauth scheme auth
close
config [-c] [-w] [-s]
connect host:port
create [-s] [-e] [-c] [-t ttl] path [data] [acl]
delete [-v version] path
deleteall path
delquota [-n|-b] path
get [-s] [-w] path
getAcl [-s] path
getAllChildrenNumber path
getEphemerals path
history
listquota path
ls [-s] [-w] [-R] path
ls2 path [watch]
printwatches on|off
quit
reconfig [-s] [-v version] [[-file path] | [-members serverID=host:port1:port2;port3[,...]*]] | [-add serverId=host:port1:port2;port3[,...]]* [-remove serverId[,...]*]
redo cmdno
removewatches path [-c|-d|-a] [-l]
rmr path
set [-s] [-v version] path data
setAcl [-s] [-v version] [-R] path acl
setquota -n|-b val path
stat [-w] path
sync path

节点

节点类型
1、Znode有两种类型:
短暂(ephemeral)(断开连接自己删除)
持久(persistent)(断开连接不删除)
2、Znode有四种形式的目录节点(默认是persistent )
PERSISTENT
PERSISTENT_SEQUENTIAL(持久序列/test0000000019 ) create -s /data data
EPHEMERAL create -e /data data
EPHEMERAL_SEQUENTIAL create -s -e /data data

在这里插入图片描述
常用四字命令:
telnet或者nc
runk 服务是否处于正常状态
conf 打印相关配置信息
cons 列出所有连接到这台服务器的客户端连接/会话信息
crst 重置所有连接和绘画的统计信息
dump 列出比较重要的会话和临时节点,只能在leader有用
envi 打印出服务环境的详细信息

集群

  • zk有一个leader多个follower
  • leader 负责进行投票的发起和决议,更新系统状态
  • follower接受客户端并向客户端返回结果,在leader选举中进行投票
  • 集群中只要半数以上的节点存活,就能正常服务 (适合奇数台机器)
  • zk的集群可以主从复制,但是没用读写分离
  • follower掉线后,重新上线可以同步数据

参考paxos协议

zookeeper的选举机制(全新集群paxos)
以一个简单的例子来说明整个选举的过程.
假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生什么.

  1. 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态
  2. 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1,2还是继续保持LOOKING状态.
  3. 服务器3启动,根据前面的理论分析,服务器3成为服务器1,2,3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader.
  4. 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1,2,3,4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了.
  5. 服务器5启动,同4一样,当小弟.

非全新集群的选举机制(数据恢复)
那么,初始化的时候,是按照上述的说明进行选举的,但是当zookeeper运行了一段时间之后,有机器down掉,重新选举时,选举过程就相对复杂了。
需要加入数据id、leader id和逻辑时钟。
数据id:数据新的id就大,数据每次更新都会更新id。
Leader id:就是我们配置的myid中的值,每个机器一个。
逻辑时钟:这个值从0开始递增,每次选举对应一个值,也就是说: 如果在同一次选举中,那么这个值应该是一致的 ; 逻辑时钟值越大,说明这一次选举leader的进程更新.
选举的标准就变成:
1、逻辑时钟小的选举结果被忽略,重新投票
2、统一逻辑时钟后,数据id大的胜出
3、数据id相同的情况下,leader id大的胜出
根据这个规则选出leader。

分布式锁实现

zk中有观察者模式:
在这里插入图片描述
观察者只有单次有效,

这篇关于大数据修炼之Zookeeper的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129960

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock