大数据修炼之Zookeeper

2024-09-02 12:32
文章标签 数据 修炼 zookeeper

本文主要是介绍大数据修炼之Zookeeper,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概述
  • 原理
  • 客户端命令
  • 节点
  • 集群
  • 分布式锁实现

https://zookeeper.apache.org/

概述

分布式系统资源协调服务中间件。

从设计模式角度看,zk是一个基于观察者设计模式的分布式服务管理框架,接受观察者注册,负责储存管理关心的数据,接受观察者注册。

zk=文件系统+通知机制

特点:

  • 一致性,最终一致性
  • 原子性
  • 单一视图,无论是连到哪个节点,数据是一致的
  • 可靠性: 每次操作都会保存到数据库,每个server保存一份相同的数据副本
  • 更新请求顺序进行,来此同一个client的更新按其发送顺序依次执行。
  • 实时性,在一定时间范围内,client能读到最新的数据
    在这里插入图片描述
    数据模型的结构整体可以看作是一个树,每个节点称作ZNode,每个znode默认存储1MB数据,每个ZNode都可以存储数据。

应用场景:

  1. 数据发布订阅,集中式配置中心(推拉)
    在这里插入图片描述
  2. 软负载均衡 https://blog.csdn.net/autfish/article/details/51576695
    在这里插入图片描述
  3. 集群管理: 多少机器在工作,每台机器的运行状态,集中上线下操作,分布式任务状态汇报。

原理

分布式一致性协议介绍(Paxos、Raft)
在这里插入图片描述

客户端命令

bin/zkCli.sh -server 127.0.0.1:2181

ZooKeeper -server host:port cmd args
addauth scheme auth
close
config [-c] [-w] [-s]
connect host:port
create [-s] [-e] [-c] [-t ttl] path [data] [acl]
delete [-v version] path
deleteall path
delquota [-n|-b] path
get [-s] [-w] path
getAcl [-s] path
getAllChildrenNumber path
getEphemerals path
history
listquota path
ls [-s] [-w] [-R] path
ls2 path [watch]
printwatches on|off
quit
reconfig [-s] [-v version] [[-file path] | [-members serverID=host:port1:port2;port3[,...]*]] | [-add serverId=host:port1:port2;port3[,...]]* [-remove serverId[,...]*]
redo cmdno
removewatches path [-c|-d|-a] [-l]
rmr path
set [-s] [-v version] path data
setAcl [-s] [-v version] [-R] path acl
setquota -n|-b val path
stat [-w] path
sync path

节点

节点类型
1、Znode有两种类型:
短暂(ephemeral)(断开连接自己删除)
持久(persistent)(断开连接不删除)
2、Znode有四种形式的目录节点(默认是persistent )
PERSISTENT
PERSISTENT_SEQUENTIAL(持久序列/test0000000019 ) create -s /data data
EPHEMERAL create -e /data data
EPHEMERAL_SEQUENTIAL create -s -e /data data

在这里插入图片描述
常用四字命令:
telnet或者nc
runk 服务是否处于正常状态
conf 打印相关配置信息
cons 列出所有连接到这台服务器的客户端连接/会话信息
crst 重置所有连接和绘画的统计信息
dump 列出比较重要的会话和临时节点,只能在leader有用
envi 打印出服务环境的详细信息

集群

  • zk有一个leader多个follower
  • leader 负责进行投票的发起和决议,更新系统状态
  • follower接受客户端并向客户端返回结果,在leader选举中进行投票
  • 集群中只要半数以上的节点存活,就能正常服务 (适合奇数台机器)
  • zk的集群可以主从复制,但是没用读写分离
  • follower掉线后,重新上线可以同步数据

参考paxos协议

zookeeper的选举机制(全新集群paxos)
以一个简单的例子来说明整个选举的过程.
假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生什么.

  1. 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态
  2. 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1,2还是继续保持LOOKING状态.
  3. 服务器3启动,根据前面的理论分析,服务器3成为服务器1,2,3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader.
  4. 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1,2,3,4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了.
  5. 服务器5启动,同4一样,当小弟.

非全新集群的选举机制(数据恢复)
那么,初始化的时候,是按照上述的说明进行选举的,但是当zookeeper运行了一段时间之后,有机器down掉,重新选举时,选举过程就相对复杂了。
需要加入数据id、leader id和逻辑时钟。
数据id:数据新的id就大,数据每次更新都会更新id。
Leader id:就是我们配置的myid中的值,每个机器一个。
逻辑时钟:这个值从0开始递增,每次选举对应一个值,也就是说: 如果在同一次选举中,那么这个值应该是一致的 ; 逻辑时钟值越大,说明这一次选举leader的进程更新.
选举的标准就变成:
1、逻辑时钟小的选举结果被忽略,重新投票
2、统一逻辑时钟后,数据id大的胜出
3、数据id相同的情况下,leader id大的胜出
根据这个规则选出leader。

分布式锁实现

zk中有观察者模式:
在这里插入图片描述
观察者只有单次有效,

这篇关于大数据修炼之Zookeeper的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129960

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很