大数据修炼之hadoop--MapReduce

2024-09-02 12:32
文章标签 数据 hadoop 修炼 mapreduce

本文主要是介绍大数据修炼之hadoop--MapReduce,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 定义
  • 概念
  • 流程
  • 支持的数据类型
  • demo
  • 切片策略
    • FileInputFormat
  • 片与块的关系
  • 提交流程
  • 关键设置
  • Job提交流程阶段总结
    • 准备
    • 提交

定义

MapReduce最早是由谷歌公司研究提出的一种面向大规模数据处理的并行计算模型和方法。
特点:
MapReduce是一个基于集群的高性能并行计算平台。
MapReduce是一个并行计算与运行软件框架。
MapReduce是一个并行程序设计模型与方法。

易于编程,良好的扩展性,高容错性,适合PB级别以上的海量数据的离线处理
但是同时,不适合实时计算,不擅长流式计算,不擅长DAG计算(程序依赖)

概念

Job(任务): 一个MR程序
MRAppMaster(MR任务的主节点):一个Job在运行是,会先启动一个进程,负责Job执行过程的监控,容错,申请资源,提交task
Task(任务):计算
Map:切分。 将输入数据切分成若干小部分,每个部分为1片split,每片数据交给一个task进行计算(MapTask)
Reduce: MapTask的汇总

常用组件:
Mapper
Reducer
InputFormat 输入目录的文件格式。 普通文件:FileInputFormat , SequeceFileInput(hadoop格式),DBInputFormat(数据库的格式)
OutputFormat 类上
RecordWriter 记录写出其 结果以什么格式,写出到文件中
Partitioner 分区器

流程

MapReduce中,Map阶段处理的数据如何传递给Reduce阶段,是整个MapReduce框架中最关键的一个流程,这个流程就叫Shuffle。它的核心机制包括数据分区、排序和缓存等。
在这里插入图片描述

支持的数据类型

(1)BooleanWritable:标准布尔型数值。
(2)ByteWritable:单字节数值。
(3)DoubleWritable:双字节数。
(4)FloatWritable:浮点数。
(5)IntWritable:整型数。
(6)LongWritable:长整型数。
(7)Text:使用UTF8格式存储的文本。
(8)NullWritable:当<key,value>中的key或value为空时使用。
(9)ArrayWritable:存储属于Writable类型的值数组(要使用ArrayWritable类型作为Reduce输入的value类型,需要创建ArrayWritable的子类来指定存储在其中的Writable值的类型)。

运行最新版hadoop的mapreduce的时候经常会有各种报错,最好是有linux环境可以用。windows环境下设置HADOOP_HOME,并把wintils放在bin目录下:
https://github.com/steveloughran/winutils

demo

maven

 <dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.2.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.2.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.2.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>3.2.0</version></dependency><dependency><groupId>commons-logging</groupId><artifactId>commons-logging</artifactId><version>1.2</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><scope>test</scope></dependency>

code:

public class MyDriver {public static final Configuration configuration = new Configuration();static {
//        configuration.set("fs.defaultFS", "hdfs://192.168.31.101:9000");System.setProperty("HADOOP_USER_NAME", "hadoop");
//        System.setProperty("HADOOP_HOME", "D:\\tools\\hadoop-3.3.0");}public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {remortJob();
//        localJob();}private static void remortJob() throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {System.setProperty("HADOOP_HOME", "D:\\tools\\hadoop-3.3.0");Path inputPath=new Path("/wcinput/logs");Path outputPath=new Path("/wcoutput/test");configuration.set("fs.defaultFS","hdfs://192.168.31.101:9000");configuration.set("fs.defaultFS","hdfs://192.168.31.101:9000");FileSystem fs=FileSystem.get(new URI("hdfs://192.168.31.101:9000"),configuration,"root");if (fs.exists(outputPath)) {fs.delete(outputPath, true);}
//        创建jobJob job=Job.getInstance(configuration);job.setJobName("wordcount test");
//        设置jobjob.setMapperClass(MyMapper.class);job.setReducerClass(MyReducer.class);
//            准备序列化器job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);//            输入输出目录FileInputFormat.setInputPaths(job,inputPath);FileOutputFormat.setOutputPath(job,outputPath);
//        运行jobjob.waitForCompletion(true);}private static void localJob() throws IOException, InterruptedException, ClassNotFoundException {System.setProperty("HADOOP_HOME", "D:\\tools\\hadoop-3.3.0");Path inputPath=new Path("d:/mrinput/");Path outputPath=new Path("d:/mroutput/wd");FileSystem fs=FileSystem.get(configuration);
//        创建jobJob job=Job.getInstance(configuration);job.setJobName("wordcount test");
//        设置jobjob.setMapperClass(MyMapper.class);job.setReducerClass(MyReducer.class);
//            准备序列化器job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);//            输入输出目录FileInputFormat.setInputPaths(job,inputPath);FileOutputFormat.setOutputPath(job,outputPath);
//        运行jobjob.waitForCompletion(true);}
}public class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {private Text outKey=new Text();private IntWritable outValue=new IntWritable(1);/*** 每个 keyin  valuein 执行一次* 每个 keyvalue都转成(word,1)* @param key* @param value* @param context* @throws IOException* @throws InterruptedException*/@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//        super.map(key, value, context);System.out.println(" key:"+key +"  value:"+value);String[] split = value.toString().split("\t");for (String word :split) {outKey.set(word);context.write(outKey,outValue);}}
}public class MyReducer extends Reducer<Text, IntWritable,Text,IntWritable> {private IntWritable outValue;@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//        super.reduce(key, values, context);int sum=0;for (IntWritable item :values) {sum += item.get();}outValue = new IntWritable(sum);context.write(key,outValue);}
}

InputFormat的作用:

  1. 验证输入目录中文件格式,是否符合当前Job的要求
  2. 生产切片,每个切片都会交给一个MapTask处理
  3. 提供RecordReader,由RR从切片中读取记录,交给Mapper处理。

方法 List getSplits: 切片
RecordReader<K,V> createRecordReader: 创建RR

默认使用的是TextInputFormat , LineRecordReader

切片策略

TextInputFormat:
常用于输入目录中全是文本文件
RecordReader: LineRecordReader 一次处理一行,将一行内容偏移量作为key,内容value

NLineInputFormat:
切分n行,执行逻辑复杂情况

KeyValueTextInputFormat:
键值对格式
CombineTextInputText:
多个小文件

FileInputFormat

 public List<InputSplit> getSplits(JobContext job) throws IOException {StopWatch sw = new StopWatch().start();long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));// getFormatMinSplitSize  其实是1,getMinSplitSize 是取配置 mapreduce.input.fileinputformat.split.maxsizelong maxSize = getMaxSplitSize(job);   //mapreduce.input.fileinputformat.split.maxsize// generate splitsList<InputSplit> splits = new ArrayList<InputSplit>();List<FileStatus> files = listStatus(job);  // 输入目录所有文件的状态信息boolean ignoreDirs = !getInputDirRecursive(job)&& job.getConfiguration().getBoolean(INPUT_DIR_NONRECURSIVE_IGNORE_SUBDIRS, false);for (FileStatus file: files) {if (ignoreDirs && file.isDirectory()) {continue;}Path path = file.getPath();long length = file.getLen();if (length != 0) {BlockLocation[] blkLocations;if (file instanceof LocatedFileStatus) {blkLocations = ((LocatedFileStatus) file).getBlockLocations();} else {FileSystem fs = path.getFileSystem(job.getConfiguration());blkLocations = fs.getFileBlockLocations(file, 0, length);}if (isSplitable(job, path)) {//  判断方法与实现类相关,各个类自己实现,默认truelong blockSize = file.getBlockSize();long splitSize = computeSplitSize(blockSize, minSize, maxSize);long bytesRemaining = length; // 循环切片while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);splits.add(makeSplit(path, length-bytesRemaining, splitSize,blkLocations[blkIndex].getHosts(),blkLocations[blkIndex].getCachedHosts()));bytesRemaining -= splitSize;}if (bytesRemaining != 0) {int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,blkLocations[blkIndex].getHosts(),blkLocations[blkIndex].getCachedHosts()));}} else { // not splitable  不可切,直接传入文件if (LOG.isDebugEnabled()) {// Log only if the file is big enough to be splittedif (length > Math.min(file.getBlockSize(), minSize)) {LOG.debug("File is not splittable so no parallelization "+ "is possible: " + file.getPath());}}splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),blkLocations[0].getCachedHosts()));}} else { //Create empty hosts array for zero length filessplits.add(makeSplit(path, 0, length, new String[0]));}}// Save the number of input files for metrics/loadgenjob.getConfiguration().setLong(NUM_INPUT_FILES, files.size());sw.stop();if (LOG.isDebugEnabled()) {LOG.debug("Total # of splits generated by getSplits: " + splits.size()+ ", TimeTaken: " + sw.now(TimeUnit.MILLISECONDS));}return splits;}

片与块的关系

默认的片大小是文件的块大小,文件默认128M
片: InputSplit 计算MR时进行切片,临时的逻辑区,与输入格式相关
块:Block HDFS的存储单位,实际物理存在

建议,片大小=块大小。减少磁盘IO,网络IO

提交流程

 public boolean waitForCompletion(boolean verbose) throws IOException, InterruptedException,ClassNotFoundException {if (state == JobState.DEFINE) {submit();}if (verbose) {monitorAndPrintJob();} else {// get the completion poll interval from the client.int completionPollIntervalMillis = Job.getCompletionPollInterval(cluster.getConf());while (!isComplete()) {try {Thread.sleep(completionPollIntervalMillis);} catch (InterruptedException ie) {}}}return isSuccessful();}
 public void submit() throws IOException, InterruptedException, ClassNotFoundException {ensureState(JobState.DEFINE);setUseNewAPI();connect();final JobSubmitter submitter = getJobSubmitter(cluster.getFileSystem(), cluster.getClient());status = ugi.doAs(new PrivilegedExceptionAction<JobStatus>() {public JobStatus run() throws IOException, InterruptedException, ClassNotFoundException {return submitter.submitJobInternal(Job.this, cluster);}});state = JobState.RUNNING;LOG.info("The url to track the job: " + getTrackingURL());}

关键设置

MapTask数量,认为设置无效,只能通过切片的方式设置,MapTask取决于切片数。

Job提交流程阶段总结

准备

运行job.waitForCompletion(),生成一下信息
job.split 当前job的切片信息,有几个切片对象
job.splitmetainfo 切片对象的属性信息
job.xml job的属性配置

提交

本地模式:LocalJobRunner提交,创建LocalJobRunner.Job()
Map阶段: 线程池,提交多个MapTaskRunnable
每个MapTaskRunnable线程上,实例化一个MapTask对象
每个MapTask对象实例化一个Mapper
线程运行结束,在线程的作业目录中生成file.out文件,报错MapTask输出的所有Key-value
map:使用RR将切片中的数据读入到Mapper.map() context.write(key,value)
Reduce阶段:
线程池提交多个ReduceTaskRunnable
每个ReduceTask对象,实例化一个Reducer, reducer.run()
线程运行结束,在输出目录中生成,part-r-000x文件,保存ReduceTask输出的所有Key-value
copy: shuffle线程拷贝MapTask指定的分区数据
sort:将拷贝的所有分区数据汇总后,排序
reduce:排好序的数据,进行 合并

这篇关于大数据修炼之hadoop--MapReduce的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129958

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒