C4.5算法原理及Python实践

2024-09-02 06:44
文章标签 python 算法 实践 原理 c4.5

本文主要是介绍C4.5算法原理及Python实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、C4.5算法原理

C4.5算法是一种用于生成决策树的经典算法,由澳大利亚悉尼大学的Ross Quinlan教授在1993年基于ID3算法的改进提出。该算法的核心原理是通过信息增益比(Gain Ratio)来选择最优的划分属性,从而构建决策树。以下是C4.5算法的主要原理:

1. 信息熵与信息增益

信息熵(Entropy):信息熵是度量样本集合纯度的指标,表示数据的不确定性。信息熵越高,表示数据越混乱,不确定性越大;信息熵越低,表示数据越有序,不确定性越小。

信息增益(Information Gain):信息增益表示通过某个属性进行划分后,信息熵的减少量。信息增益越大,表示使用该属性进行划分的效果越好,即能够使得划分后的数据更加有序。

2. 信息增益比

C4.5算法使用信息增益比作为选择最优划分属性的标准,而不是ID3算法中的信息增益。信息增益比通过引入“分裂信息”(Split Information)来规范化信息增益,从而避免了ID3算法中倾向于选择拥有多个属性值的属性的问题。分裂信息表示通过属性进行划分时的复杂度,属性取值数目越多,分裂信息值越大。信息增益比等于信息增益除以分裂信息。

3. 决策树构建

C4.5算法通过递归的方式构建决策树:

选择最优划分属性:计算每个属性的信息增益比,选择信息增益比最高的属性作为当前节点的划分属性。

生成子节点:根据选择的划分属性,将数据集划分为若干子集,每个子集对应一个子节点。

递归调用:对每个子集递归地调用C4.5算法,生成子节点的子树。

停止条件:当满足停止条件时(如所有样本属于同一类别、达到预设的最大深度等),递归过程停止,当前节点成为叶子节点。

4. 剪枝

为了防止决策树过拟合,C4.5算法引入了剪枝技术。剪枝方法分为预剪枝和后剪枝两大类。C4.5算法通常采用后剪枝方法中的PEP(Pessimistic Error Pruning)剪枝法,该方法根据剪枝前后的错误率来判定是否进行子树的修剪。

5. 处理连续属性和缺失值

C4.5算法能够处理连续型属性和具有缺失值的属性数据。对于连续型属性,C4.5算法会先对其进行离散化处理;对于缺失值,C4.5算法提供了多种处理方案,如通过频率最高的属性值进行赋值、为缺失值的样本单独创建分支等。

综上所述,C4.5算法通过信息增益比选择最优划分属性、递归构建决策树、剪枝以及处理连续属性和缺失值等步骤,构建出高效且准确的决策树模型。该算法在分类任务中表现出色,被广泛应用于机器学习和数据挖掘领域。

二、C4.5算法的Python实践

在Python中,直接实现C4.5算法可能需要一些编程工作,因为像scikit-learn这样的主流机器学习库并不直接提供C4.5算法的实现。不过,scikit-learn中的决策树算法(如DecisionTreeClassifier)使用了类似的原理,如信息增益(或基尼不纯度)来选择最优划分属性,但并不完全等同于C4.5的信息增益比和剪枝方法。

然而,我们可以通过自定义函数或使用现有的决策树库(如Orange或sklearn的DecisionTreeClassifier,尽管后者不是C4.5的直接实现),来模拟C4.5算法的行为。这里,我将给出一个简化的C4.5算法的Python实践框架,但请注意,这不会是一个完整的C4.5实现,因为它将省略一些复杂的优化和剪枝步骤。

首先,你需要安装必要的库(如numpy和pandas,尽管在这个简单示例中我们可能不需要它们全部):

pip install numpy pandas

然后,你可以开始编写一个简化的决策树构建函数。但是,由于篇幅和复杂性的限制,这里我将只给出一个概念性的框架:

class C45DecisionTree:

    def __init__(self):

        # 初始化决策树节点(这里省略了具体实现)

        self.root = None

    def calculate_entropy(self, y):

        # 计算给定标签列表y的信息熵

        # ...(实现代码)

        pass

    def calculate_split_info(self, X, feature):

        # 计算给定特征和数据集的分裂信息

        # ...(实现代码)

        pass

    def calculate_information_gain_ratio(self, X, y, feature):

        # 计算给定特征的信息增益比

        # 需要先计算信息增益和分裂信息

        # ...(实现代码)

        pass

    def choose_best_feature(self, X, y):

        # 选择最佳划分特征

        # 遍历所有特征,计算信息增益比,选择最大的那个

        # ...(实现代码)

        pass

    def build_tree(self, X, y):

        # 递归构建决策树

        # ...(实现代码)

        # 停止条件:所有样本属于同一类,或达到预设的最大深度/最小样本数等

        pass

    # 其他函数,如剪枝、预测等(省略)

# 示例用法(假设)

# data = pd.DataFrame(...)  # 你的数据集

# labels = data['target']   # 目标变量

# features = data.drop('target', axis=1)  # 特征变量

# tree = C45DecisionTree()

# tree.build_tree(features, labels)

# ...(进行预测等)

请注意,上面的代码是一个非常简化的框架,它省略了实际实现中需要解决的许多复杂问题,如处理连续属性、缺失值、剪枝策略等。

如果你需要一个完整的C4.5实现,你可能需要考虑使用其他语言(如Java)的库,如Weka,它提供了C4.5算法的实现。或者,你可以寻找Python中基于C4.5原理的第三方库,尽管这样的库可能不如scikit-learn等主流库那样流行或广泛支持。

最后,如果你只是想使用类似C4.5的决策树算法,并且不介意它是否严格遵循C4.5的所有细节,那么scikit-learn的DecisionTreeClassifier将是一个很好的选择。你可以通过调整其参数来接近C4.5的行为,尽管它默认使用的是基尼不纯度而不是信息增益比。

这篇关于C4.5算法原理及Python实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129283

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结