C++初始化列表,staic成员变量

2024-09-02 06:04

本文主要是介绍C++初始化列表,staic成员变量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

初始化列表的引入 

class Stack
{
public:Stack(int capacity){_arr = (int*)malloc(sizeof(int) * capacity);if (_arr == NULL){perror("malloc->_newarr");return;}_capacity = capacity;}
private:int _capacity;int _size;int* _arr;                      //默认构造函数://无参构造函数
};                                  //全缺省构造函数//自己没有写编译器自动生生成的//总之:就是不需要传参的就是默认构造函数
class MyQueue
{
public:private:Stack _pushst;Stack _popst;int _size;
};

代码解释:上面的程序是两个栈实现一个队列的部分代码,在MyQueue类中,自己没有写构造函数,通过前面的知识,我们知道,编译器生成的默认构造函数,对于自定义类型,会去调用他的默认构造函数,对内置类型,没有规定要不要处理

但是,通过上面的代码,Stack里面的构造函数,是需要传递参数的,不是默认构造函数,所以这个时候MyQueue类里面的构造函数,需要自己实现,这时候,就需要使用初始化列表

初始化列表

初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟
一个放在括号中的初始值或表达式。

上面是实现MyQueue类的构造函数,就可以写成下面的形式

class MyQueue
{
public:MyQueue():_pushst(4)        //传递参数为4,_popst(4),        _size(0)           //_size初始化为0{//_size=0;         //这个这样写也可以}
private:Stack _pushst;Stack _popst;int _size;
};

注意事项

注意事项1

类中包含以下的成员,必须在初始化列表初始化

1.const修饰的成员变量

2.引用

3.自定义类型,其没有默认构造函数

4.初始化列表可以理解成为变量初始化的地方

注意事项2

尽量使用初始化列表初始化,因为不管你用不用初始化列表初始化,对于自定义类型,一般会先使用初始化列表初始化,也就是,先走初始化列表,在走函数体里面的

在实践中,我们一般都使用初始化列表初始化,如果不方便的话,我们再使用函数体初始化

比如下面的:

class A
{
public:A():_st1(4),_st2(4),_ptr((int*)malloc(40)){memset(_ptr, 0, 40);_size++;}
private:Stack _st1;Stack _st2;int* _ptr;int _size = 1;
};

1.前面我们学到,类里面的成员变量可以再申明的时候给一个缺省值,其实这个值就是给初始化列表用的,这里的_size=2

2.初始化列表括号里面很自由,里面可以写函数,可以操作符号,比如 1+1之类的,以上面的malloc函数之类的,虽然这个不常用

3.上面类里面的构造函数花括号里面的是无法写再初始化列表里面的,这个时候只能写再“{}”里面

注意事项3

成员变量在类中的声明顺序就是在初始化列表中的初始化顺序,和在初始化列表中的初始话顺序无关

class A
{
public:A(int a):_a1(a)         ,_a2(_a1)           {}void Print(){cout << "_a1->" << _a1 << endl;cout << "_a2->" << _a2 << endl;}
private:int _a2;int _a1;
};int main()
{A a(1);a.Print();return 0;
}

这个程序的运行结果又以下几种:

A. 输出1  1
B.程序崩溃
C.编译不通过
D.输出1  随机值

正确的答案是选D

上面的程序,先声明的是_a2,再申明的是_a1,所以先执行的是:_a2(_a1),但是这个时候_a1还是一个随机值,所以,_a2自然也是一个随机值,然后再执行_a1(a)

所以,在类中,我们在初始化列表的时候,一定要严格按照变量申明的顺序来写

隐藏类型转换

单参数构造

下面有一个程序:

class A
{
public:A(int a):_a(a){cout << "A()" << endl;}A(const A& a){_a = a._a;}
private:int _a;
};int main()
{A a(1);//拷贝构造A b = a;//隐式类型转换a = 2;return 0;
}

上面的隐式类型装换处的,a是一个类,2是一个常量,其中,3构造出一个a类型的临时对象,这个临时对象在赋值拷贝给a对象

程序运行结果:

值得注意的是,编译器遇到连续构造,加上拷贝构造的话,会直接优化成为直接构造,比如下面的语句,所以上面的结果只显示直接构造的函数结果

重点

如果将上面添加一个引用,就要在前面添加一个const

int b=3;

const A&a=b;

因为3在这里构造出了一个A的临时对象,但是由于临时对象具有常性,所以要在前面的加上一个const,但是,下面的就不一样了

int a=1;

double b=a; 

这里的a是int 类型的,b是double类型的,这中间也涉及到隐式类型转换,但是double前面为什么不加上const嘞?

因为引用涉及到权限的放大和缩小,你对别名进行操作是会改变原变量的,但是你对上面的double b进行操作是不会影响a变量的

多参数

如果A类对象自定义类型有两个及其两个以上,该怎么办?

class A
{
public:A(int a,int b):_a1(a),_a2(b){cout << "A(int a,int b)" << endl;}
private:int _a1;int _a2;};int main()
{A a = {1,2};return 0;
}

直接用一个花括号括起来,但是,对于这种隐式类型转换,必须要有相应的构造函数,

这里构造函数,都不能 将_a1和_a2构造出来

隐式类型转化的实践

有人可能质疑,这个也太麻烦了,有什么用,下面是一个例子

class A
{
public:A(int a):_a(a){}
private:int _a;
};class Stack
{
public:void push(const A& a){}
};int main()
{Stack st;//第一种A a(1);st.push(a);//第二种st.push(2);return 0;
}

上面有两种push的方法,第一种是先构造出A类的对象,再传A类的对象过去,第二种是直接传递一个值,很明显,第二种更方便

对于多种参数的Push,用下面的、

st.push({1,2........});

explicit关键字

如果你不想要隐式类型转换的发生,你可以再构造函数的前面加上一个explicit关键字

static成员变量

声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用
static修饰的成员函数,称之为静态成员函数。静态成员变量一定要在类外进行初始化

比如下面的

class A
{
public:A(int a=1){_a = a;}
private:int _a;static int _b;
};//在类的外面定义
int A::_b = 1;int main()
{return 0;
}
class A 
{
private:int _a=1;       //直接给缺省值static int _b;};int A::_b=1;int main()
{return 0;
}

为什么这个变量只能在类的外面定义,而不能使用缺省值嘞?

因为该变量是静态成员变量,不是在类里面,而是在静态区的,缺省值是用于初始化列表的,

static成员函数

static成员函数就是在函数的前面加上一个static关键字,该成员函数没有this指针,只能访问静态成员

class A
{static int Get_a(){return _a;}
private:static int _a;
};int A::_a = 0;

一个程序

class A
{
public:A(){_scount++;}A(const A& a){_scount++;}~A(){_scount--;}static int count(){return _scount;}
private:static int _scount;
};int A::_scount = 0;int main()
{A a1;A a2;A a3 = a1;A a4(a3);cout<<a1.count()<<endl;return 0;
}

运行结果:

通过这个程序,可以知道创建了多少个对象

友元

友元函数

友元函数可以直接访问类的私有成员,它是定义在类外部的普通函数,不属于任何类,但需要在
类的内部声明,声明时需要加friend关键字。

比如我们之前学的日期类:

class Date
{friend ostream&operator<<(ostream& _cout,const Date& d);friend istream& operator>>(istream& _cin, Date& d);
public:Date(int year = 1990, int month = 1, int day = 1){_year = year;_month = month;_day = day;}
private:int _year;int _month;int _day;
};ostream& operator<<(ostream& _cout, const Date& d)
{_cout << d._year << "年" << d._month << "月" << d._day << "日" << endl;return _cout;
}istream& operator>>(istream& _cin, Date& d)
{_cin >> d._year >> d._month >> d._day;return _cin;
}int main()
{Date d;cout << d;return 0;
}

输出结果:

 在之前的博客里面,我们探讨了为什么不像下面一样写

void operator<<(ostream& out)
{out << _year << "年" << _month << "月" << _day << "日" << endl;
}

因为调用的时候就是像下面一样调用

d<<(cout);
d.operator<<(cout);

这不符合我们的逻辑

友元类

友元类就是一个类是另一个类的朋友,但是应该满足以下几个性质

1.友元是单向的,就好比生活中,你把别人当成朋友,别人可不把你当成朋友

比如下面的,Date类是Time类的友元,那么就说明Date是Time的朋友,但是Time就不是Date的朋友,Date可以访问Time里面的私有成员,但是Time不可以访问Date里面的私有成员

class Date
{
public:Date(int year = 1900, int month = 1, int day = 1): _year(year), _month(month), _day(day){}void SetTimeOfDate(int hour, int minute, int second){// 直接访问时间类私有的成员变量_t._hour = hour;_t._minute = minute;_t._second = second;}
private:int _year;int _month;int _day;Time _t;
};
class Time
{friend class Date; 
public:Time(int hour = 0, int minute = 0, int second = 0): _hour(hour), _minute(minute), _second(second){}
private:int _hour;int _minute;int _second;
};

2.友元关系不能传递
如果C是B的友元, B是A的友元,则不能说明C时A的友元

内部类

概念:如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,
它不属于外部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越
的访问权限。
注意:内部类就是外部类的友元类,参见友元类的定义,内部类可以通过外部类的对象参数来访
问外部类中的所有成员。但是外部类不是内部类的友元。
特性:
1. 内部类可以定义在外部类的public、protected、private都是可以的。
2. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名。
3. sizeof(外部类)=外部类,和内部类没有任何关系

class A
{
private:static int k;int h;
public:class B // B天生就是A的友元{
public:void foo(const A& a)
{cout << k << endl;//OKcout << a.h << endl;//OK
}};};
int A::k = 1;
int main()
{A::B b;b.foo(A());return 0;
}

匿名对象

一般我们定义类的时候在使用的时候都会初始化,这种叫做有名对象,有的时候我们不会定义对象,这种叫做匿名对象

并且匿名对象的生命周期只在本行,比如下面的程序

在上面的程序中,定义了一个有名对象和匿名对象,通过程序运行的结果来看,匿名对象在创建的时候调用了构造函数立马就调用的析构函数,这就说明匿名对象的生命周期只有一行

匿名对象在下面的场景中很好用 

class Solution {
public:int Sum_Solution(int n) {//...return n;}
};int main()
{Solution s1;s1.Sum_Solution(10);Solution().Sum_Solution(10);return 0;
}

上面的函数调用有些人喜欢用有名对象来调用,但是有些人喜欢用匿名来调用,因为这样写只要写一行,更加方便

拷贝对象是的一些编译器的优化

传值传参

class A
{
public:A(int a = 0):_a(a){cout << "A(int a)" << endl;}A(const A& aa):_a(aa._a){cout << "A(const A& aa)" << endl;}~A(){cout << "~A()" << endl;}
private:int _a;
};void f1(A aa)
{}
void f2(A& aa)
{}
int main()
{A a1;                 //构造f1(a1);               //拷贝构造一个临时对象,函数结束的时候再销毁cout << endl;return 0;
}

运行结果

之前我们说过,传值传参的时候,实参会拷贝构造一个临时对象给形参, 函数调用的时候再销毁就会调用析构函数

引用传参

引用传参和传值传参就不一样,因为形参是实参的别名,所以是没有拷贝构造的

void f2(const A& aa)
{}
int main()
{A a1;f2(a1);cout << endl;return 0;
}

运行结果

 连续的构造+拷贝构造

连续的构造加拷贝构造时,编译器会直接优化成为直接构造

void f1(A aa)
{}nt main()
{f1(2);return 0;
}

运行结果:

以下的几个场景都是构造加上拷贝构造的场景

void f1(A aa)
{}int main()
{A aa1;f1(aa1);A aa3 = 3;return 0;
}

 值得注意的是,编译器可能会优化,但是有的编译器可不会

连续的拷贝构造

连续的拷贝构造可能会优化成为一个拷贝构造,有的编译器可能会优化得更大

A f3()
{A aa;return aa;
}int main()
{A ret = f3();return 0;
}

这里是构造+拷贝构造+拷贝构造

 运行结果:

这里直接优化成为了直接构造

包含赋值构造重载的 

这篇关于C++初始化列表,staic成员变量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129196

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的