DFS解决floodfill算法

2024-09-02 04:28
文章标签 算法 解决 dfs floodfill

本文主要是介绍DFS解决floodfill算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 图像渲染
  • 2. 岛屿数量
  • 3. 岛屿的最大面积
  • 4. 被围绕的区域
  • 5. 太平洋大西洋水流问题
  • 6. 扫雷游戏
  • 7. 机器人的运动范围

1. 图像渲染

在这里插入图片描述

算法原理:
在这里插入图片描述

这题不需要创建visit数组去记录使用过的节点,因为我每次dfs都尝试修改image数组的值,当下一次遍历到当前节点时target != image[x][y],这也就间接的帮我们记录了使用过的节点。

class Solution {
public:int dx[4] = {-1, 1, 0, 0};int dy[4] = {0, 0, -1, 1};int m, n, target;void dfs(vector<vector<int>>& image, int sr, int sc, int color){image[sr][sc] = color; // 染色for(int k = 0; k < 4; k++){int x = sr + dx[k];int y = sc + dy[k];if(x >= 0 && x < m&& y >= 0 && y < n&& target == image[x][y]){dfs(image, x, y, color);}}}vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int color) {if(image[sr][sc] == color) return image;m = image.size(), n = image[0].size();target = image[sr][sc];dfs(image, sr, sc, color);return image;}
};

2. 岛屿数量

在这里插入图片描述

算法原理:
dfs负责将陆地1周围的连通区域(上下左右是1的区域)标记为true,当周围遇到了海洋0,dfs终止。此时,在函数外侧则去统计岛屿的数目(区域是1,并且区域未被标记)。

class Solution {
public:int dx[4] = {-1, 1, 0, 0};int dy[4] = {0, 0, -1, 1};bool vis[301][301];int m, n;int ret;// dfs只是负责将与1的连通区域标记一下, 方便找陆地的时候只记录一次void dfs(vector<vector<char>>& grid, int i, int j) {vis[i][j] = true;for(int k = 0; k < 4; k++){int x = i + dx[k], y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n&& grid[x][y] == '1' && vis[x][y] == false){dfs(grid, x, y);}}}int numIslands(vector<vector<char>>& grid) {m = grid.size(), n = grid[0].size();// 找有多少块岛屿for(int i = 0; i < m; i++)for(int j = 0; j < n; j++)// 找到陆地, 且当前位置未被标记过if(grid[i][j] == '1' && vis[i][j] == false){ret++;dfs(grid, i, j);}return ret;}
};

3. 岛屿的最大面积

在这里插入图片描述理解了上一题怎么写之后,这题仍然是一样的原理。只不过统计的不是岛屿的数量,而是岛屿中的最大面积。

class Solution {
public:int dx[4] = {-1, 1, 0, 0};int dy[4] = {0, 0, -1, 1};bool vis[301][301];int m, n;int MaxArea, area;// dfs只是负责将与1的连通区域标记一下, 方便找陆地的时候只记录一次void dfs(vector<vector<int>>& grid, int i, int j) {vis[i][j] = true, area++;for(int k = 0; k < 4; k++){int x = i + dx[k], y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n&& grid[x][y] == 1 && vis[x][y] == false){dfs(grid, x, y);}}}int maxAreaOfIsland(vector<vector<int>>& grid) {   m = grid.size(), n = grid[0].size();// 找有多少块岛屿for(int i = 0; i < m; i++)for(int j = 0; j < n; j++)// 找到了下一块岛屿if(grid[i][j] == 1 && vis[i][j] == false){dfs(grid, i, j);MaxArea = max(MaxArea, area);area = 0;}return MaxArea;}
};

4. 被围绕的区域

在这里插入图片描述

算法原理:
方法一:直接法
这道题的难点是如何处理边界区域的'o'不被替换为 'X',而被 'X'包围的区域则被替换。
如果只是将'o'替换为 'X',那很简单,直接进行深度优先遍历即可;如果我们想处理边界区域不被替换,我们也可以进行深度优先遍历,只不过遇到了非法区域我们就采用回溯还原原先的状态。但是实现起来较为复杂,下面介绍第二种方法。
方法二:间接法
先处理外围区域,遍历外围区域,当遇到'o'时,我们采用dfs,将所有的'o'替换为'.',这样就将边界区域的情况给处理了。再遍历整个区域,遇到'.'则替换回'o';遇到'o'将所有的'o'替换为'X',这样就自然而然的将边界区域和内部区域分开处理了。
在这里插入图片描述

class Solution {
public:int dx[4] = {-1, 1, 0, 0};int dy[4] = {0, 0, -1, 1};int m, n;void dfs(vector<vector<char>>& board, int i, int j){board[i][j] = '.';for(int k = 0; k < 4; k++){int x = i + dx[k], y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n&& board[x][y] == 'O'){dfs(board, x, y);}}}void solve(vector<vector<char>>& board) {m = board.size(), n = board[0].size();// step1: 先遍历外围区域, 将边界的 'O' 全部修改成 '.'for(int i = 0; i < n; i++){if(board[0][i] == 'O') dfs(board, 0, i);if(board[m-1][i] == 'O') dfs(board, m-1, i);}for(int i = 1; i < m - 1; i++){if(board[i][0] == 'O') dfs(board, i, 0);if(board[i][n-1] == 'O') dfs(board, i, n-1);}// step2: 再遍历整个区域for(int i = 0; i < m; i++)for(int j = 0; j < n; j++)if(board[i][j] == 'O') board[i][j] = 'X';else if(board[i][j] == '.') board[i][j] = 'O';}
};

5. 太平洋大西洋水流问题

理解题意:
这道题的意思就是,水流只能往节点值比当前值小或者等于的方向流动。我要找到一个下标,使得这个水流既能流往大西洋,又能流往太平洋。

解法一:直接法
算法原理:
对整个二维数组的每一个元素进行判断,判断其是否能汇入太平洋和大西洋。以一个元素为例,如图元素5的dfs过程中:用一个vis数组记录使用过的节点,并且dfs只能往节点值较低的或者相等的去搜。整个递归结束后,对vis数组进行判别,从而确定该节点是否为所需求的节点。
在这里插入图片描述

缺点是部分测试用例会超时。原因在于,1.每个节点的搜索存在着重复的搜索
在这里插入图片描述

class Solution {
public:int dx[4] = {-1, 1, 0, 0};int dy[4] = {0, 0, -1, 1};int m, n;void dfs(vector<vector<int>>& heights, int i, int j, vector<vector<bool>>& vis){vis[i][j] = true; // 标记海水遍历过的地方for(int k = 0; k < 4; k++){int x = i + dx[k], y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n&& heights[x][y] <= heights[i][j] // 水往低处流, 所以是小于等于&& vis[x][y] == false){dfs(heights, x, y, vis);}}}// 判断遍历得到的vis数组bool checkvis(vector<vector<bool>>& vis){// 保证vis的左边界或者上边界有true && vis的右边界或者下边界有true// flag1表示是否能流入太平洋bool flag1 = false;for(int j = 0; j < n; j++) {if(vis[0][j] == true) {flag1 = true;break;}}for(int i = 0; i < m; i++){if(vis[i][0] == true) {flag1 = true;break;}}// flag2表示是否能流入大西洋bool flag2 = false;for(int j = 0; j < n; j++){if(vis[m-1][j] == true) {flag2 = true;break;}}for(int i = 0; i < m; i++){if(vis[i][n-1] == true) {flag2 = true;break;}}// 将vis数组的所有值清0, 方便对下一个节点进行dfsfor(int i = 0; i < m; i++)for(int j = 0; j < n; j++)vis[i][j] = false;return flag1 && flag2;}vector<vector<int>> pacificAtlantic(vector<vector<int>>& heights) {m = heights.size(), n = heights[0].size();vector<vector<bool>> vis(m, vector<bool>(n));vector<vector<int>> result;for(int i = 0; i < m; i++)for(int j = 0; j < n; j++){dfs(heights, i, j, vis);if(checkvis(vis)) result.push_back({i, j});}return result;}
};

解法二:间接法
算法原理:逆向思维
从二维数组的边界开始搜索,当后面的节点的值 >= 当前节点的值就往后面搜索。创建两个vis数组,第一个vis数组负责从太平洋海岸(二维数组左边界和上边界)开始搜索;第二个vis数组负责从大西洋海岸(二维数组右边界和下边界)开始搜索。搜索完之后两个vis数组都有从边界搜索到达的最远位置被标记,找到两个vis数组公共位置都被标记为true的即为既可流向太平洋也可流向大西洋 。
如下图以边界的两个数为例子,得到(3, 1)和(2, 2)为两个vis数组公共位置,它们既可以流入太平洋也可以流入大西洋。
在这里插入图片描述

class Solution {
public:int dx[4] = {-1, 1, 0, 0};int dy[4] = {0, 0, -1, 1};int m, n;void dfs(vector<vector<int>>& heights, int i, int j, vector<vector<bool>>& vis){vis[i][j] = true; // 标记海水遍历过的地方for(int k = 0; k < 4; k++){int x = i + dx[k], y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n&& heights[x][y] >= heights[i][j]&& vis[x][y] == false){dfs(heights, x, y, vis);}}}vector<vector<int>> pacificAtlantic(vector<vector<int>>& heights) {m = heights.size(), n = heights[0].size();// 0. 创建两个vis数组vector<vector<bool>> Pac(m, vector<bool>(n));vector<vector<bool>> Atl(m, vector<bool>(n));// 1. 先处理太平洋for(int j = 0; j < n; j++) dfs(heights, 0, j, Pac); // 第0行for(int i = 0; i < m; i++) dfs(heights, i, 0, Pac); // 第0列// 2. 再处理大西洋for(int j = 0; j < n; j++) dfs(heights, m-1, j, Atl); // 第m-1行for(int i = 0; i < m; i++) dfs(heights, i, n-1, Atl); // 第n-1列// 3. 判断两个xis数组是否有重复的部分vector<vector<int>> result;for(int i = 0; i < m; i++)for(int j = 0; j < n; j++)if(Pac[i][j] == Atl[i][j] && Atl[i][j] == true) result.push_back({i, j});return result;}
};

6. 扫雷游戏

在这里插入图片描述在这里插入图片描述**算法原理:**模拟

在这里插入图片描述每到一个节点,就去判断一下周围有无地雷,有地雷就将该节点改为地雷的总数,并回溯;如果周围没有地雷就在当前节点填入B,继续往周围8个节点dfs。

class Solution {
public:int dx[8] = {-1, 1, 0, 0, -1, 1, -1, 1}; // 上,下,左,右,斜方向int dy[8] = {0, 0, -1, 1, -1, -1, 1, 1};int m, n;void dfs(vector<vector<char>>& board, int i, int j){// 统计周围地雷的个数int count = 0;for (int k = 0; k < 8; k++) {int x = i + dx[k], y = j + dy[k];if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] == 'M') {count++;}}// 如果周围有地雷, 将当前格子修改成周围地雷的总数, 再回溯if (count) {board[i][j] = count + '0';return;} else // 周围没有地雷{board[i][j] = 'B';for (int k = 0; k < 8; k++) {int x = i + dx[k], y = j + dy[k];if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] == 'E') {dfs(board, x, y);}}}}vector<vector<char>> updateBoard(vector<vector<char>>& board, vector<int>& click) {m = board.size(), n = board[0].size();int x = click[0], y = click[1];if (board[x][y] == 'M') // 刚开始直接点到地雷{board[x][y] = 'X';return board;}dfs(board, x, y);return board;}
};

7. 机器人的运动范围

在这里插入图片描述算法原理:
还是深搜,遇到符合题目要求(行纵坐标的数位之和<=threshold)的节点,就给结果ret增加1;注意细节问题:应避免dfs往回搜,用vis数组标记使用过的节点。

class Solution {
public:int dx[4] = {-1, 1, 0, 0};int dy[4] = {0, 0, -1, 1};bool vis[101][101];int m, n;int ret;bool CanIn(int threshold, int x, int y){int sum = 0;while(x){sum += x % 10;x /= 10;}while(y){sum += y % 10;y /= 10;}if(sum > threshold) return false;return true;}void dfs(int threshold, int i, int j){vis[i][j] = true;ret++;for(int k = 0; k < 4; k++){int x = i + dx[k], y = j + dy[k];if(x >= 0 && x < m && y >= 0 && y < n&& CanIn(threshold, x, y)&& vis[x][y] == false){dfs(threshold, x, y);}}}int movingCount(int threshold, int rows, int cols) {m = rows, n = cols;dfs(threshold, 0, 0);return ret;}
};

这篇关于DFS解决floodfill算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128991

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使