深度学习:TensorFlow2构建、保存、加载神经网络模型【经典流程】

本文主要是介绍深度学习:TensorFlow2构建、保存、加载神经网络模型【经典流程】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、network.save_weights、network.load_weights

保存模型的参数,加载已保存的参数的network的结构必须和之前的network的所有结构一模一样

import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 放在 import tensorflow as tf 之前才有效import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, datasets# 一、获取数据集
(X_train, Y_train), (X_test, Y_test) = datasets.mnist.load_data()
print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))# 二、数据处理
# 预处理函数:将numpy数据转为tensor
def preprocess(x, y):x = tf.cast(x, dtype=tf.float32) / 255.x = tf.reshape(x, [28 * 28])y = tf.cast(y, dtype=tf.int32)y = tf.one_hot(y, depth=10)return x, y# 2.1 处理训练集
# print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))
dataset_train = tf.data.Dataset.from_tensor_slices((X_train, Y_train))  # 此步骤自动将numpy类型的数据转为tensor
dataset_train = dataset_train.map(preprocess)  # 调用map()函数批量修改每一个元素数据的数据类型
dataset_train = dataset_train.shuffle(len(X_train))  # 打散dataset_train中的样本顺序,防止图片的原始顺序对神经网络性能的干扰
print('dataset_train = {0},type(dataset_train) = {1}'.format(dataset_train, type(dataset_train)))
batch_size_train = 20000  # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_train = dataset_train.batch(batch_size_train)  # 将dataset_batch_train中每sample_num_of_each_batch_train张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_train张图片
print('dataset_batch_train = {0},type(dataset_batch_train) = {1}'.format(dataset_batch_train, type(dataset_batch_train)))
# 2.2 处理测试集
dataset_test = tf.data.Dataset.from_tensor_slices((X_test, Y_test))  # 此步骤自动将numpy类型的数据转为tensor
dataset_test = dataset_test.map(preprocess)  # 调用map()函数批量修改每一个元素数据的数据类型
dataset_test = dataset_test.shuffle(len(X_test))  # 打散样本顺序,防止图片的原始顺序对神经网络性能的干扰
batch_size_test = 5000  # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_test = dataset_test.batch(batch_size_test)  # 将dataset_test中每sample_num_of_each_batch_test张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_test张图片# 三、构建神经网络结构:Dense 表示全连接神经网络,激活函数用 relu
network = keras.Sequential([layers.Dense(500, activation=tf.nn.relu),  # 降维:784-->500layers.Dense(300, activation=tf.nn.relu),  # 降维:500-->300layers.Dense(100, activation=tf.nn.relu),  # 降维:300-->100layers.Dense(10)])  # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784])  # 28*28=784,None表示样本数量,是不确定的值。
network.summary()  # 打印神经网络model的简要信息# 四、设置神经网络各个参数
network.compile(optimizer=optimizers.Adam(lr=0.01),loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 五、给神经网络喂数据,训练神经网络模型参数
print('\n++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.fit(dataset_batch_train, epochs=5, validation_data=dataset_batch_test, validation_freq=2)  # validation_freq参数表示每多少个epoch做一次验证/validation
print('++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')# 六、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')network.save_weights('weights.ckpt')
print('\n================saved weights================')
del network
print('================del network================')# 七、创建一个和所加载参数的原始network一模一样的network
print('================创建一个和所加载参数的原始network一模一样的network================')
network = keras.Sequential([layers.Dense(500, activation=tf.nn.relu),  # 降维:784-->500layers.Dense(300, activation=tf.nn.relu),  # 降维:500-->300layers.Dense(100, activation=tf.nn.relu),  # 降维:300-->100layers.Dense(10)])  # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784])  # 28*28=784,None表示样本数量,是不确定的值。
network.compile(optimizer=optimizers.Adam(lr=0.01),loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
network.load_weights('weights.ckpt')
print('================loaded weights================')# 八、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')# 九、模型上线应用
sample = next(iter(dataset_batch_test))  # 从 dataset_batch_test 中取一个batch数据做模拟
x = sample[0]
y = sample[1]  # one-hot
pred = network.predict(x)  # [b, 10]
y = tf.argmax(y, axis=1)  # convert back to number
pred = tf.argmax(pred, axis=1)
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
print(pred)
print(y)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++')

打印结果:

X_train.shpae = (60000, 28, 28),Y_train.shpae = (60000,)------------type(X_train) = <class 'numpy.ndarray'>type(Y_train) = <class 'numpy.ndarray'>
dataset_train = <ShuffleDataset shapes: ((784,), (10,)), types: (tf.float32, tf.float32)>type(dataset_train) = <class 'tensorflow.python.data.ops.dataset_ops.ShuffleDataset'>
dataset_batch_train = <BatchDataset shapes: ((None, 784), (None, 10)), types: (tf.float32, tf.float32)>type(dataset_batch_train) = <class 'tensorflow.python.data.ops.dataset_ops.BatchDataset'>
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 500)               392500    
_________________________________________________________________
dense_1 (Dense)              (None, 300)               150300    
_________________________________________________________________
dense_2 (Dense)              (None, 100)               30100     
_________________________________________________________________
dense_3 (Dense)              (None, 10)                1010      
=================================================================
Total params: 573,910
Trainable params: 573,910
Non-trainable params: 0
_________________________________________________________________++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
Epoch 1/5
3/3 [==============================] - 2s 113ms/step - loss: 2.7174 - accuracy: 0.1086
Epoch 2/5
3/3 [==============================] - 3s 492ms/step - loss: 2.6596 - accuracy: 0.1666 - val_loss: 1.6333 - val_accuracy: 0.4709
Epoch 3/5
3/3 [==============================] - 2s 115ms/step - loss: 1.5516 - accuracy: 0.4968
Epoch 4/5
3/3 [==============================] - 2s 255ms/step - loss: 1.0690 - accuracy: 0.6475 - val_loss: 0.7587 - val_accuracy: 0.7859
Epoch 5/5
3/3 [==============================] - 2s 115ms/step - loss: 0.7137 - accuracy: 0.7955
++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 22ms/step - loss: 0.5240 - accuracy: 0.8493
++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++================saved weights================
================del network================
================创建一个和所加载参数的原始network一模一样的network================
================loaded weights================++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 22ms/step - loss: 0.5223 - accuracy: 0.8486
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++
tf.Tensor([6 3 7 ... 5 1 0], shape=(5000,), dtype=int64)
tf.Tensor([6 3 7 ... 3 1 0], shape=(5000,), dtype=int64)
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++Process finished with exit code 0

二、network.save()、network.load()

保存整个模型,加载后再根据network的通常做法进行操作。

import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 放在 import tensorflow as tf 之前才有效import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, datasets# 一、获取数据集
(X_train, Y_train), (X_test, Y_test) = datasets.mnist.load_data()
print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))# 二、数据处理
# 预处理函数:将numpy数据转为tensor
def preprocess(x, y):x = tf.cast(x, dtype=tf.float32) / 255.x = tf.reshape(x, [28 * 28])y = tf.cast(y, dtype=tf.int32)y = tf.one_hot(y, depth=10)return x, y# 2.1 处理训练集
# print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))
dataset_train = tf.data.Dataset.from_tensor_slices((X_train, Y_train))  # 此步骤自动将numpy类型的数据转为tensor
dataset_train = dataset_train.map(preprocess)  # 调用map()函数批量修改每一个元素数据的数据类型
dataset_train = dataset_train.shuffle(len(X_train))  # 打散dataset_train中的样本顺序,防止图片的原始顺序对神经网络性能的干扰
print('dataset_train = {0},type(dataset_train) = {1}'.format(dataset_train, type(dataset_train)))
batch_size_train = 20000  # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_train = dataset_train.batch(batch_size_train)  # 将dataset_batch_train中每sample_num_of_each_batch_train张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_train张图片
print('dataset_batch_train = {0},type(dataset_batch_train) = {1}'.format(dataset_batch_train, type(dataset_batch_train)))
# 2.2 处理测试集
dataset_test = tf.data.Dataset.from_tensor_slices((X_test, Y_test))  # 此步骤自动将numpy类型的数据转为tensor
dataset_test = dataset_test.map(preprocess)  # 调用map()函数批量修改每一个元素数据的数据类型
dataset_test = dataset_test.shuffle(len(X_test))  # 打散样本顺序,防止图片的原始顺序对神经网络性能的干扰
batch_size_test = 5000  # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_test = dataset_test.batch(batch_size_test)  # 将dataset_test中每sample_num_of_each_batch_test张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_test张图片# 三、构建神经网络结构:Dense 表示全连接神经网络,激活函数用 relu
network = keras.Sequential([layers.Dense(500, activation=tf.nn.relu),  # 降维:784-->500layers.Dense(300, activation=tf.nn.relu),  # 降维:500-->300layers.Dense(100, activation=tf.nn.relu),  # 降维:300-->100layers.Dense(10)])  # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784])  # 28*28=784,None表示样本数量,是不确定的值。
network.summary()  # 打印神经网络model的简要信息# 四、设置神经网络各个参数
network.compile(optimizer=optimizers.Adam(lr=0.01),loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 五、给神经网络喂数据,训练神经网络模型参数
print('\n++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.fit(dataset_batch_train, epochs=5, validation_data=dataset_batch_test, validation_freq=2)  # validation_freq参数表示每多少个epoch做一次验证/validation
print('++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')# 六、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')network.save('model.h5')
print('\n================saved total model================')
del network
print('================del network================')# 七、从磁盘加载保存的整体模型(包括所有参数、结构...)
print('================loaded model from file================')
network = tf.keras.models.load_model('model.h5', compile=False)
network.compile(optimizer=optimizers.Adam(lr=0.01),loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 八、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')# 九、模型上线应用
sample = next(iter(dataset_batch_test))  # 从 dataset_batch_test 中取一个batch数据做模拟
x = sample[0]
y = sample[1]  # one-hot
pred = network.predict(x)  # [b, 10]
y = tf.argmax(y, axis=1)  # convert back to number
pred = tf.argmax(pred, axis=1)
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
print(pred)
print(y)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++')

打印结果:

X_train.shpae = (60000, 28, 28),Y_train.shpae = (60000,)------------type(X_train) = <class 'numpy.ndarray'>type(Y_train) = <class 'numpy.ndarray'>
dataset_train = <ShuffleDataset shapes: ((784,), (10,)), types: (tf.float32, tf.float32)>type(dataset_train) = <class 'tensorflow.python.data.ops.dataset_ops.ShuffleDataset'>
dataset_batch_train = <BatchDataset shapes: ((None, 784), (None, 10)), types: (tf.float32, tf.float32)>type(dataset_batch_train) = <class 'tensorflow.python.data.ops.dataset_ops.BatchDataset'>
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 500)               392500    
_________________________________________________________________
dense_1 (Dense)              (None, 300)               150300    
_________________________________________________________________
dense_2 (Dense)              (None, 100)               30100     
_________________________________________________________________
dense_3 (Dense)              (None, 10)                1010      
=================================================================
Total params: 573,910
Trainable params: 573,910
Non-trainable params: 0
_________________________________________________________________++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
Epoch 1/5
3/3 [==============================] - 2s 119ms/step - loss: 2.4869 - accuracy: 0.2464
Epoch 2/5
3/3 [==============================] - 2s 514ms/step - loss: 3.5169 - accuracy: 0.3786 - val_loss: 1.5471 - val_accuracy: 0.5026
Epoch 3/5
3/3 [==============================] - 2s 116ms/step - loss: 1.4532 - accuracy: 0.5238
Epoch 4/5
3/3 [==============================] - 2s 273ms/step - loss: 0.9930 - accuracy: 0.6789 - val_loss: 0.6357 - val_accuracy: 0.8010
Epoch 5/5
3/3 [==============================] - 2s 112ms/step - loss: 0.6005 - accuracy: 0.8118
++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 24ms/step - loss: 0.4489 - accuracy: 0.8735
++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++================saved total model================
================del network================
================loaded model from file================++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 21ms/step - loss: 0.4505 - accuracy: 0.8729
++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++
tf.Tensor([9 0 9 ... 5 1 9], shape=(5000,), dtype=int64)
tf.Tensor([9 0 9 ... 5 1 9], shape=(5000,), dtype=int64)
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++Process finished with exit code 0

三、tf.saved_model.save()、tf.saved_model.load()、

保存为可以被其他语言(比如:C++)调用的格式
在这里插入图片描述

这篇关于深度学习:TensorFlow2构建、保存、加载神经网络模型【经典流程】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128904

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程