大数据-Hadoop-MapReduce(二):MapReduce编程案例

2024-09-02 03:48

本文主要是介绍大数据-Hadoop-MapReduce(二):MapReduce编程案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

案例:使用MapReduce进行词频统计

1、读取本地数据,使用本地(Windows中的hadoop)计算资源,计算结果保存到本地

在这里插入图片描述

WCMapper.java

package com.wyr.wordcount;import java.io.IOException;
import java.util.List;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordReader;/*** 注意:导包时,导入 org.apache.hadoop.mapreduce包下的类(2.0的新api)* * 1. 自定义的类必须符合 MapperReduce 的Mapper的规范* * 2.在MapperReduce中,只能处理 key-value格式的数据* 	 KEYIN, VALUEIN: mapper输入的k-v类型。 由当前Job的 InputFormat 的 RecordReader决定!封装输入的 key-value 由 RecordReader 自动进行。*   KEYOUT, VALUEOUT: mapper输出的k-v类型: 自定义*   * 3. InputFormat的作用:*  		①验证输入目录中文件格式,是否符合当前Job的要求*  		②生成切片,每个切片都会交给一个MapTask处理;方法: List<InputSplit> getSplits*  		③创建RecordReader,由RecordReader从切片中读取记录,交给Mapper进行处理;方法:RecordReader<K,V> createRecordReader;默认hadoop使用的是TextInputFormat,TextInputFormat使用LineRecordReader!** 4. 在Hadoop中,如果有Reduce阶段。通常key-value都需要实现序列化协议,来进行不同机器间的数据网络传输。*  	MapTask处理后的key-value,只是一个阶段性的结果!这些key-value需要传输到ReduceTask所在的机器!*  	不同机器间的数据传输最快捷的方式:将一个对象通过序列化技术,序列化到一个文件中,经过网络传输到另外一台机器,再使用反序列化技术,从文件中读取数据,还原为对象!*  	java的序列化协议的缺点: Serilizxxxxx,特点:不仅保存对象的属性值,类型,还会保存大量的包的结构,子父类和接口的继承信息!	保存的信息太多、太重*  	hadoop开发了一款轻量级的序列化协议: Wriable机制!**/
public class WCMapper extends Mapper<LongWritable, Text, Text, IntWritable>{	// KEYIN, VALUEIN, KEYOUT, VALUEOUT    第 3 个参数表示单词;第 4个参数表示词频private Text out_key=new Text();private IntWritable out_value=new IntWritable(1);// 针对输入的每个 keyin-valuein调用一次   (0,hello	hi	hello	hi),其中key为:0,value为:hello	hi	hello	hi@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {	// key 为 输入数据的每行的偏移量;value 为输入数据的每行的数据;context为输出数据System.out.println("keyin:"+key+"----keyout:"+value);String[] words = value.toString().split("\t");for (String word : words) {out_key.set(word);//写出数据(单词,1)context.write(out_key, out_value);}	}
}

WCReducer.java

package com.wyr.wordcount;import java.io.IOException;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;/*** 1. Reducer需要符合Hadoop的Reducer规范** KEYIN, VALUEIN: Mapper输出的 keyout-valueout* KEYOUT, VALUEOUT: 自定义**/
public class WCReducer extends Reducer<Text, IntWritable, Text, IntWritable>{   // KEYIN, VALUEIN, KEYOUT, VALUEOUTprivate IntWritable out_value=new IntWritable();// reduce一次处理一组数据,key相同的视为一组@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {int sum=0;for (IntWritable intWritable : values) {sum+=intWritable.get();}out_value.set(sum);//将累加的值写出context.write(key, out_value);}
}

WCDriver.java

package com.wyr.wordcount;import java.io.IOException;
import java.net.URI;import org.apache.hadoop

这篇关于大数据-Hadoop-MapReduce(二):MapReduce编程案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128902

相关文章

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文