自然语言处理(NLP)-子词模型(Subword Models):BPE(Byte Pair Encoding)、WordPiece、ULM(Unigram Language Model)

本文主要是介绍自然语言处理(NLP)-子词模型(Subword Models):BPE(Byte Pair Encoding)、WordPiece、ULM(Unigram Language Model),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在NLP任务中,神经网络模型的训练和预测都需要借助词表来对句子进行表示。传统构造词表的方法,是先对各个句子进行分词,然后再统计并选出频数最高的前N个词组成词表。通常训练集中包含了大量的词汇,以英语为例,总的单词数量在17万到100万左右。出于计算效率的考虑,通常N的选取无法包含训练集中的所有词。因而,这种方法构造的词表存在着如下的问题:

  • 实际应用中,模型预测的词汇是开放的,对于未在词表中出现的词(Out Of Vocabulary, OOV),模型将无法处理及生成;
  • 词表中的低频词/稀疏词在模型训练过程中无法得到充分训练,进而模型不能充分理解这些词的语义;
  • 一个单词因为不同的形态会产生不同的词,如由"look"衍生出的"looks", “looking”, “looked”,显然这些词具有相近的意思,但是在词表中这些词会被当作不同的词处理,一方面增加了训练冗余,另一方面也造成了大词汇量问题。

一种解决思路是使用字符粒度来表示词表,虽然能够解决OOV问题,但单词被拆分成字符后,一方面丢失了词的语义信息,另一方面,模型输入会变得很长,这使得模型的训练更加复杂难以收敛。

针对上述问题,Subword(子词)模型方法横空出世。它的划分粒度介于词与字符之间,比如可以将”looking”划分为”look”和”ing”两个子词,而划分出来的"look",”ing”又能够用来构造其它词,如"look"和"ed"子词可组成单词"looked",因而Subword方法能够大大降低词典的大小,同时对相近词能更好地处理。

目前有三种主流的Subword算法,它们分别是:Byte Pair Encoding (BPE), WordPiece和Unigram Language Model。

一、BPE算法(Byte Pair Encoding)

二、WordPiece算法

三、ULM算法(Unigram Language Model)




参考资料:
NLP三大Subword模型详解:BPE、WordPiece、ULM

这篇关于自然语言处理(NLP)-子词模型(Subword Models):BPE(Byte Pair Encoding)、WordPiece、ULM(Unigram Language Model)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128892

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2