数据结构-非线性结构-树形结构:有序树 ->二叉树 ->哈夫曼树 / 霍夫曼树(Huffman Tree)【根据所有叶子节点的权值构造出的 -> 带权值路径长度最短的二叉树,权值较大的结点离根较近】

本文主要是介绍数据结构-非线性结构-树形结构:有序树 ->二叉树 ->哈夫曼树 / 霍夫曼树(Huffman Tree)【根据所有叶子节点的权值构造出的 -> 带权值路径长度最短的二叉树,权值较大的结点离根较近】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
哈夫曼树概念:给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。

哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

一、相关概念

二叉树:每个节点最多有2个子树的有序树,两个子树分别称为左子树、右子树。有序的意思是:树有左右之分,不能颠倒

叶子节点:一棵树当中没有子结点的结点称为叶子结点,简称“叶子”

路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。

结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积

树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和

树的高度:树中结点的最大层次。包含n个结点的二叉树的高度至少为log2 (n+1)

二、哈夫曼树的构造算法

  1. { W 1 , W 2 , W 3 … W n } \{W_1,W_2,W_3 \dots W_n\} {W1,W2,W3Wn}看成n棵树的森林
  2. 在森林中选择两个根节点权值最小的树进行合并,作为一颗新树的左右子树,新树的根节点权值为左右子树的和
  3. 删除之前选择出的子树,把新树加入森林
  4. 重复2-3步骤,直到森林只有一棵树为止,概树就是所求的哈夫曼树

注意:哈夫曼树并不唯一,但带权路径长度一定是相同的。

三、哈夫曼树的构造过程

  1. 8个结点的权值大小如下:
    在这里插入图片描述
  2. 从19,21,2,3,6,7,10,32中选择两个权小结点。选中2,3。同时算出这两个结点的和5。

在这里插入图片描述

  1. 从19,21,6,7,10,32,5中选出两个权小结点。选中5,6。同时计算出它们的和11。

在这里插入图片描述

  1. 从19,21,7,10,32,11中选出两个权小结点。选中7,10。同时计算出它们的和17。
    【这时选出的两个数字都不是已经构造好的二叉树里面的结点,所以要另外开一棵二叉树;或者说,如果两个数的和正好是下一步的两个最小数的其中的一个,那么这个树直接往上生长就可以了,如果这两个数的和比较大,不是下一步的两个最小数的其中一个,那么就并列生长。】
    在这里插入图片描述

  2. 从19,21,32,11,17中选出两个权小结点。选中11,17。同时计算出它们的和28。
    在这里插入图片描述

  3. 从19,21,32,28中选出两个权小结点。选中19,21。同时计算出它们的和40。另起一颗二叉树。
    在这里插入图片描述

  4. 从32,28, 40中选出两个权小结点。选中28,32。同时计算出它们的和60。

在这里插入图片描述

  1. 从 40, 60中选出两个权小结点。选中40,60。同时计算出它们的和100。 好了,此时哈夫曼树已经构建好了。
    在这里插入图片描述

可见:

  1. 权重越大,距离根节点越近
  2. 叶子的个数为n,构造哈夫曼树中新增的节点的个数为n-1

四、哈夫曼编码

在数据通信中,需要将传送的文字转换成二进制的字符串,用0,1码的不同排列来表示字符。

例如,需传送的报文为AFTER DATA EAR ARE ART AREA,这里用到的字符集为A,E,R,T,F,D,各字母出现的次数为{8,4,5,3,1,1}。现要求为这些字母设计编码。要区别6个字母,最简单的二进制编码方式是等长编码,固定采用3位二进制,可分别用000、001、010、011、100、101A,E,R,T,F,D进行编码发送

但是很明显,上述的编码的方式并不是最优的,即整理传送的字节数量并不是最少的。

为了提高数据传送的效率,同时为了保证【前缀编码】,可以使用哈夫曼树生成哈夫曼编码解决问题。【任一字符的编码都不是另一个字符编码的前缀,这种编码称为前缀编码

可用字符集中的每个字符作为叶子结点生成一棵编码二叉树,为了获得传送报文的最短长度,可将每个字符的出现频率作为字符结点的权值赋予该结点上,显然字使用频率越小权值越小,权值越小叶子就越靠下,于是频率小编码长,频率高编码短,这样就保证了此树的最小带权路径长度效果上就是传送报文的最短长度

因此,求传送报文的最短长度问题转化为求由字符集中的所有字符作为叶子结点,由字符出现频率作为其权值所产生的哈夫曼树的问题。

利用哈夫曼树来设计二进制的前缀编码,

  • 既满足【前缀编码】的条件
  • 又保证报文编码总长最短

下图中label1 .... label6分别表示A,E,R,T,F,D左节点用1表示,右节点用0表示

在这里插入图片描述

这篇关于数据结构-非线性结构-树形结构:有序树 ->二叉树 ->哈夫曼树 / 霍夫曼树(Huffman Tree)【根据所有叶子节点的权值构造出的 -> 带权值路径长度最短的二叉树,权值较大的结点离根较近】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128827

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

Java实现按字节长度截取字符串

《Java实现按字节长度截取字符串》在Java中,由于字符串可能包含多字节字符,直接按字节长度截取可能会导致乱码或截取不准确的问题,下面我们就来看看几种按字节长度截取字符串的方法吧... 目录方法一:使用String的getBytes方法方法二:指定字符编码处理方法三:更精确的字符编码处理使用示例注意事项方

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1