Pandas-高级处理(八):数据离散化【pandas.cut:根据指定分界点对连续数据进行分箱处理】【pandas.qcut:指定箱子的数量对连续数据进行等宽分箱处理】【get_dummies】

本文主要是介绍Pandas-高级处理(八):数据离散化【pandas.cut:根据指定分界点对连续数据进行分箱处理】【pandas.qcut:指定箱子的数量对连续数据进行等宽分箱处理】【get_dummies】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python实现连续数据的离散化处理主要基于两个函数:pandas.cut和pandas.qcut,pandas.cut根据指定分界点对连续数据进行分箱处理,pandas.qcut可以指定箱子的数量对连续数据进行等宽分箱处理(注意:所谓等宽指的是每个箱子中的数据量是相同的)

  • 应用cut、qcut实现数据的区间分组
  • 应用get_dummies实现数据的one-hot编码

数据离散化

  • 可以用来减少给定连续属性值的个数
  • 在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数值代表落在每个子区间中的属性值。

qcut、cut实现数据分组

  • qcut:大致分为相同的几组
  • cut:自定义分组区间

get_dummies实现哑变量矩阵

# coding:utf-8import pandas as pd#指定箱子分箱(等距离分箱子)
#指定箱子分箱(等距离分箱子)
year = [1992, 1983, 1922, 1932, 1973]   # 待分箱数据
bins = [1900,  1950,  2000]   # 指定箱子的分界点result = pd.cut(year, bins)
print(result)
# 结果如下:
# [(1950, 2000], (1950, 2000], (1900, 1950], (1900, 1950], (1950, 2000]]
# Categories (2, interval[int64]): [(1900, 1950] < (1950, 2000]]
# 结果说明:其中(1950, 2000]说明year列表的第一个值1992位于(1950, 2000]区间print(pd.value_counts(result))   # 对不同箱子中的数进行计数# 结果如下:
# (1950, 2000]    3
# (1900, 1950]    2
# dtype: int64# labels参数为False时,返回结果中用不同的整数作为箱子的指示符
result2 = pd.cut(year, bins,labels=False)
# 输出结果中的数字对应着不同的箱子
print(result2)# 结果如下:
# [1 1 0 0 1]
# 结果说明:其中 1 说明year列表的第一个值1992位于(1950, 2000]区间
# 其中 0 说明year列表的第一个值1922位于(1900, 1950]区间print(pd.value_counts(result2))   # 对不同箱子中的数进行计数# 结果如下:
# 1    3
# 0    2
# dtype: int64# 可以将想要指定给不同箱子的标签传递给labels参数
group_names = [ '50_before', '50_after']
result3 = pd.cut(year, bins, labels=group_names)
print(pd.value_counts(result3))# 结果如下:
# 50_after     3
# 50_before    2
# dtype: int64#等频分箱
#等频分箱
year2 = [1992, 1983, 1922, 1932, 1973, 1999, 1993, 1995]   # 待分箱数据
result4 = pd.qcut(year2,q=4)   # 参数q指定所分箱子的数量   
# 从输出结果可以看到每个箱子中的数据量时相同的
print(result4)# 结果如下:
# [(1987.5, 1993.5], (1962.75, 1987.5], (1921.999, 1962.75], 
# (1921.999, 1962.75], (1962.75, 1987.5], (1993.5, 1999.0], 
# (1987.5, 1993.5], (1993.5, 1999.0]]
# Categories (4, interval[float64]): [(1921.999, 1962.75] < 
# (1962.75, 1987.5] < (1987.5, 1993.5] < (1993.5, 1999.0]]print(pd.value_counts(result4))  # 从输出结果可以看到每个箱子中的数据量时相同的# 结果如下:
# (1993.5, 1999.0]       2
# (1987.5, 1993.5]       2
# (1962.75, 1987.5]      2
# (1921.999, 1962.75]    2
# dtype: int64

1 为什么要离散化

连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具。

2 什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数
值代表落在每个子区间中的属性值。

离散化有很多种方法,这使用一种最简单的方式去操作

  • 原始人的身高数据:165,174,160,180,159,163,192,184
  • 假设按照身高分几个区间段:150-165, 165-180,180-195

这样我们将数据分到了三个区间段,我可以对应的标记为矮、中、高三个类别,最终要处理成一个"哑变量"矩阵

3 股票的涨跌幅离散化

我们对股票每日的"p_change"进行离散化

在这里插入图片描述

3.1 读取股票的数据

先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

3.2 将股票涨跌幅数据进行分组

在这里插入图片描述

使用的工具:

  • pd.qcut(data, q):
    • 对数据进行分组将数据分组,一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

3.3 股票涨跌幅分组数据变成one-hot编码

  • 什么是one-hot编码

把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1.其又被称为独热编码。

把下图中左边的表格转化为使用右边形式进行表示:

在这里插入图片描述

  • pandas.get_dummies(data, prefix=None)

    • data:array-like, Series, or DataFrame

    • prefix:分组名字

# 得出one-hot编码矩阵
dummies = pd.get_dummies(p_counts, prefix="rise")

在这里插入图片描述




参考资料:
利用pandas实现数据的离散化处理(分箱操作)
pandas:数据离散化与离散化数据的后期处理(one-hot)

这篇关于Pandas-高级处理(八):数据离散化【pandas.cut:根据指定分界点对连续数据进行分箱处理】【pandas.qcut:指定箱子的数量对连续数据进行等宽分箱处理】【get_dummies】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128679

相关文章

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避