Pandas-数据操作-字符串型(一):常用方法【str(自动过滤NaN值)、索引】

2024-09-02 01:58

本文主要是介绍Pandas-数据操作-字符串型(一):常用方法【str(自动过滤NaN值)、索引】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pandas针对字符串配备的一套方法,使其易于对数组的每个元素进行操作。

一、str:通过str访问,且自动排除丢失/ NA值

通过str访问,且自动排除丢失/ NA值

  • 直接通过.str调用字符串方法
  • 可以对Series、Dataframe使用
  • 自动过滤NaN值
import numpy as np
import pandas as pd# 通过str访问,且自动排除丢失/ NA值
# 直接通过.str调用字符串方法
# 可以对Series、Dataframe使用
# 自动过滤NaN值s = pd.Series(['A', 'b', 'C', 'bbhello', '123', np.nan, 'hj'])
df = pd.DataFrame({'key1': list('abcdef'),'key2': ['hee', 'fv', 'w', 'hija', '123', np.nan]})
print("s = \n", s)
print('-' * 50)
print("df = \n", df)
print('-' * 200)print("s.str.count('b') = \n", s.str.count('b'))
print('-' * 50)
print("df['key2'].str.upper() = \n", df['key2'].str.upper())
print('-' * 200)# df.columns是一个Index对象,也可使用.str
df.columns = df.columns.str.upper()
print("df = \n", df)
print('-' * 200)

打印结果:

s = 
0          A
1          b
2          C
3    bbhello
4        123
5        NaN
6         hj
dtype: object
--------------------------------------------------
df = key1  key2
0    a   hee
1    b    fv
2    c     w
3    d  hija
4    e   123
5    f   NaN
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
s.str.count('b') = 0    0.0
1    1.0
2    0.0
3    2.0
4    0.0
5    NaN
6    0.0
dtype: float64
--------------------------------------------------
df['key2'].str.upper() = 0     HEE
1      FV
2       W
3    HIJA
4     123
5     NaN
Name: key2, dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
df = KEY1  KEY2
0    a   hee
1    b    fv
2    c     w
3    d  hija
4    e   123
5    f   NaN
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

二、字符串索引

import numpy as np
import pandas as pd# 字符串索引s = pd.Series(['A', 'b', 'C', 'bbhello', '123', np.nan, 'hj'])
df = pd.DataFrame({'key1': list('abcdef'),'key2': ['hee', 'fv', 'w', 'hija', '123', np.nan]})# 取第一个字符
data1 = s.str[0]
print("取第一个字符: data1 = s.str[0] = \n", data1)
print('-' * 200)
# 取前两个字符
data2 = s.str[:2]
print("取前两个字符: data2 = s.str[:2] = \n", data2)
print('-' * 200)# str之后和字符串本身索引方式相同
data3 = df['key2'].str[:2]
print("data3 = df['key2'].str[:2] = \n", data3)
print('-' * 200)

打印结果:

取第一个字符: data1 = s.str[0] = 0      A
1      b
2      C
3      b
4      1
5    NaN
6      h
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
取前两个字符: data2 = s.str[:2] = 0      A
1      b
2      C
3     bb
4     12
5    NaN
6     hj
dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data3 = df['key2'].str[:2] = 0     he
1     fv
2      w
3     hi
4     12
5    NaN
Name: key2, dtype: object
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

这篇关于Pandas-数据操作-字符串型(一):常用方法【str(自动过滤NaN值)、索引】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1128672

相关文章

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

IDEA中Maven Dependencies出现红色波浪线的原因及解决方法

《IDEA中MavenDependencies出现红色波浪线的原因及解决方法》在使用IntelliJIDEA开发Java项目时,尤其是基于Maven的项目,您可能会遇到MavenDependenci... 目录一、问题概述二、解决步骤2.1 检查 Maven 配置2.2 更新 Maven 项目2.3 清理本

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

CentOS 7 YUM源配置错误的解决方法

《CentOS7YUM源配置错误的解决方法》在使用虚拟机安装CentOS7系统时,我们可能会遇到YUM源配置错误的问题,导致无法正常下载软件包,为了解决这个问题,我们可以替换YUM源... 目录一、备份原有的 YUM 源配置文件二、选择并配置新的 YUM 源三、清理旧的缓存并重建新的缓存四、验证 YUM 源

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock