[深度学习]交叉熵(Cross Entropy)算法实现及应用

2024-09-02 01:32

本文主要是介绍[深度学习]交叉熵(Cross Entropy)算法实现及应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:要学习深度学习,就不可避免要学习Tensorflow框架。初了解Tensorflow的基础知识,看到众多API,觉得无从下手。但是到了阅读完整项目代码的阶段,通过一个完整的项目逻辑,就会让我们看到的不只是API,而是API背后,与理论研究相对应的道理。除了Tensorflow中文社区的教程,最近一周主要在阅读DCGAN的代码(Github:https://github.com/carpedm20/DCGAN-tensorflow)。在阅读代码的过程中,遇到了很多问题,也学习了不少知识。接下来的篇幅,围绕DCGAN代码中出现的知识点,记录我的学习过程。

 

一.交叉熵(Cross Entropy)

交叉熵(Cross Entropy)是Shannon信息论中的一个重要概念,主要用于度量两个概率分布间的差异性信息。

公式如下:

其中,p表示真实标记的分布,q则为训练后的模型的预测标记分布。利用交叉熵,可以衡量p与q的相似性。交叉熵在神经网络中可以作为损失函数。

 

二.应用场景

在Tensorflow中,针对分类问题,定义了四个交叉熵函数,分别是:

1)tf.nn.sigmoid_cross_entropy_with_logits

2)tf.nn.softmax_cross_entropy_with_logits

3)tf.nn.sparse_softmax_cross_entropy_with_logits

4)tf.nn.weighted_cross_entropy_with_logits

 

1)tf.nn.sigmoid_cross_entropy_with_logits

[适用场景]:二分类或者多目标问题

二分类:将目标分为两类

多目标:例如,判断图片中是否包含10种动物。这10个分类之间是相互独立的,但不是相互排斥的。也就是说,图片中可以包含动物x,也可以包含动物y。对于每一个动物类别而言,其实也是一个二分类问题。与多目标问题不同的是,多分类问题要求这10个分类之间是相互排斥的。

[实际应用]:在DCGAN网络中,计算Discriminator和 Generator的 loss的时候,使用的是tf.nn.sigmoid_cross_entropy_with_logits。因为是判断输入Discriminator的数据是真实数据还是由Generator生成的数据,也就是判断数据是1还是0,相当于一个二分类问题。

[API]:tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, names=None)

定义:

`x = logits`, `z = targets`.

逻辑损失为:
        z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
      = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
      = (1 - z) * x + log(1 + exp(-x))
      = x - x * z + log(1 + exp(-x))
当x<0的时候,为了避免exp(-x)溢出,将上述等式改为:
        x - x * z + log(1 + exp(-x))
      = log(exp(x)) - x * z + log(1 + exp(-x))
      = - x * z + log(1 + exp(x))
  因此,将x>0与x<0时的情况统一起来可以得到:
      max(x, 0) - x * z + log(1 + exp(-abs(x)))

 

Args:
    logits: 未经sigmoid缩放的输入logits,即类型为float32或者float64,shape为[batch_size,num_classes]的tensor。
    targets: 目标targets,即与logits具有相同类型和shape的tensor。
    name: 操作的名称(可选)。

  Returns:

   计算得到的sigmoid交叉熵,即与logits具有相同shape的tensor。

  Raises:
    ValueError:如果logits和targets的shape不同,则会抛出异常。

代码举例:

 

# coding:utf-8
import tensorflow as tfdef sigmoid_cross_entropy_with_logits(x, y):try:return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, labels=y)except:return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, targets=y)def main(_):logits = [[0.5,0.7,0.3],[0.8,0.2,0.9]]loss = sigmoid_cross_entropy_with_logits(logits, tf.ones_like(logits))sess = tf.Session()print sess.run(loss)if __name__ == '__main__':tf.app.run()

运行结果为:

 


注意事项:

(1)输入logits是未经缩放的,该操作内部会对logits使用sigmoid操作。

(2)logits和labels(targets)必须具有相同的shape。

 

2)tf.nn.softmax_cross_entropy_with_logits

[适用场景]:多分类问题

也就是将输入分为多类,每一类都是相互排斥的。

[实际应用]:例如,在tensorflow的cifar10示例中,判断图片的动物具体是哪一种,只能是某一种类型。

[API]:softmax_cross_entropy_with_logits(logits, labels, dim=-1, name=None)

Args:

    logits: 未经softmax缩放的输入logits,即类型为float16,float32或者float64,shape为[batch_size,num_classes]的tensor。
    labels: 目标targets,即与logits具有相同类型和shape的tensor。
    dim: 分类的类别所在的维度。默认为-1,也就是最后一维。
    name: 操作的名称(可选)。

  Returns:   

    计算得到的softmax交叉熵,也就是一维tensor,与输入的logits中的batch_size大小相同。

代码举例:

 

# coding:utf-8
import tensorflow as tfdef main(_):logits = [[2,0.5,1],[0.1,1,3]]labels = [[0.2,0.3,0.5],[0.1,0.6,0.3]]logits_scaled = tf.nn.softmax(logits)result1 = tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=labels)result2 = -tf.reduce_sum(labels*tf.log(logits_scaled),1)result3 = tf.nn.softmax_cross_entropy_with_logits(logits=logits_scaled,labels=labels)with tf.Session() as sess:print '直接使用API计算softmax交叉熵:'print sess.run(result1)print '\n'print '利用原理计算softmax交叉熵:'print sess.run(result2)print '\n'print '错误!将logits输入事先用softmax缩放:'print sess.run(result3)if __name__ == '__main__':tf.app.run()

运行结果:

 

 

3)tf.nn.sparse_softmax_cross_entropy_with_logits

[应用场景]:多分类问题

tf.nn.sparse_softmax_cross_entropy_with_logits是 tf.nn.softmax_cross_entropy_with_logits的易用版本,除了输入参数不同,作用和算法实现都是一样的。前面提到softmax_cross_entropy_with_logits的输入必须是类似onehot encoding的多维特征,但是CIFAR-10,ImageNet和大部分分类场景都只有一个分类目标,label都是从0编码的整数,每次转成one hot encoding比较麻烦。那么,就可以使用tf.nn.sparse_softmax_cross_entropy_with_logits,直接使用类别索引作为labels,而不用转为one hot encoding。

例如:类别2,在softmax_cross_entropy_with_logits中labels可以表示为[0,0,1];在sparse_softmax_cross_entropy_with_logits中labels可以表示为2。

[API]:sparse_softmax_cross_entropy_with_logits(logits, labels, name=None)

Args:
    logits:未经softmax缩放的输入logits,即类型为float32或者float64,shape为[d_0, d_1, ..., d_{r-2}, num_classes]的tensor。

    labels: 标签,即类型为int32或者int64,shape为[d_0, d_1, ..., d_{r-2}]的tensor 。[d_0, d_1, ..., d_{r-2}]代表batch_size。labels中的每一项都必须是范围为[0, num_classes)的索引,也就是代表label是属于哪一类的。

    name: 操作的名称(可选)。

  Returns:
    表示softmax交叉熵的tensor。与labels具有相同的shape,也就是batch_size。与输入logits具有相同的类型。

代码举例:

# coding:utf-8
import tensorflow as tfdef main(_):logits = [[2,0.5,1],[0.1,1,3]]labels = [[0,1,0],[0,0,1]]labels2 = [1,2]result= tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=labels)result2= tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=labels2)with tf.Session() as sess:print 'softmax_cross_entropy_with_logits,输入logits:[[0,1,0],[0,0,1]]'print sess.run(result)print'\n'print 'sparse_softmax_cross_entropy_with_logits,输入logits:[1,2]'print sess.run(result2)if __name__ == '__main__':tf.app.run()

运行结果:


 

 

4)tf.nn.weighted_cross_entropy_with_logits

[应用场景]:tf.nn.weighted_cross_entropy_with_logits是tf.nn.sigmoid_cross_entropy_with_logits的扩展版,输入参数和实现与后者类似,不同之处在于增加了一个pos_weight参数,目的是可以增加或者减小正样本在计算Cross Entropy时的loss。

[API]:weighted_cross_entropy_with_logits(logits, targets, pos_weight, name=None):

在前面介绍tf.nn.sigmoid_cross_entropy_with_logits时,已经提到过,一般计算交叉熵的方法为:
targets * -log(sigmoid(logits)) + (1 - targets) * -log(1 - sigmoid(logits))

pos_weight用于正样本的loss计算项上:
    targets * -log(sigmoid(logits)) * pos_weight +(1 - targets) * -log(1 - sigmoid(logits))
展开来就是:
        qz * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
      = qz * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
      = qz * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
      = qz * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
      = (1 - z) * x + (qz +  1 - z) * log(1 + exp(-x))
      = (1 - z) * x + (1 + (q - 1) * z) * log(1 + exp(-x))
 令l = (1 + (q - 1) * z),为了避免溢出,最终实现为:
      (1 - z) * x + l * (log(1 + exp(-abs(x))) + max(-x, 0))
  `logits` 和 `targets`必须具有相同的类型和shape。

  Args:
    logits: 输入logits,即类型为float32或者float64,shape为[batch_size,num_classes]的tensor。
    targets: 与logits具有相同类型和shape的tensor。
    pos_weight: 系数,用于正样本上。
    name: 操作名称(可选)。

Returns:
   与logits具有相同shape的损失tensor。

  Raises:
    ValueError:如果logits和targets的shape不同,则会抛出异常。

代码举例:

 

# coding:utf-8
import tensorflow as tfdef main(_):logits = [[0.5,0.7,0.3],[0.8,0.2,0.9]]loss = tf.nn.sigmoid_cross_entropy_with_logits(logits, tf.ones_like(logits))loss2 = tf.nn.weighted_cross_entropy_with_logits(logits, tf.ones_like(logits), 0.2)loss3 = tf.nn.weighted_cross_entropy_with_logits(logits, tf.ones_like(logits), -0.2)with tf.Session() as sess:print 'sigmoid_cross_entropy_with_logits,没有pos_weight:'print sess.run(loss)print'\n'print 'weighted_cross_entropy_with_logits,正的pos_weight:'print sess.run(loss2)print'\n'print 'weighted_cross_entropy_with_logits,负的pos_weight:'print sess.run(loss3)if __name__ == '__main__':tf.app.run()

运行结果:

 

三.总结

我们可以根据业务需求(分类目标是否独立或者互斥)来选择基于sigmoid或者softmax的实现。在这两大类里面,再根据实际需求来选择使用tf.nn.sigmoid_cross_entropy_with_logits或者tf.nn.weighted_sigmoid_cross_entropy_with_logits,tf.nn.softmax_cross_entropy_with_logits或者tf.nn.sparse_softmax_cross_entropy_with_logits。

浅显解读,更深层次,移步Tensorflow官方文档。

参考博客:http://dataunion.org/26447.html

 

 

这篇关于[深度学习]交叉熵(Cross Entropy)算法实现及应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128612

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal