keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据

本文主要是介绍keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要是keras的示例都是图片分类。而真正的论文代码,又太大了,不适合初学者(比如我)来学习。

所以我查找了一些资料。我在google 上捞的。

其中有个教程让人感觉很好.更完整的教程。另一个教程。

大概就是说,你的输入ground truth label需要是(width*height,class number),然后网络最后需要加个sigmoid,后面用binary_crossentrophy 损失函数。

在说白点就是图片原始标签可能是640,480,1.这样的,你先转成onehot 640,480,13(比如我有13类,一张图片有了一个三维的标注,真是fancy),然后再转成640*480,13这个二维的标注,就是保持深度,图片拉成向量。

然后最后的网络,最后一层的激活函数,要用sigmoid配binary_crossentrophy

或者是softmax 配catahorical_crossentrophy

官网说catagotical_cross rntrophy:

注意: 当使用 categorical_crossentropy 损失时,你的目标值应该是分类格式 (即,如果你有 10 个类,每个样本的目标值应该是一个 10 维的向量,这个向量除了表示类别的那个索引为 1,其他均为 0)。 为了将 整数目标值 转换为 分类目标值,你可以使用 Keras 实用函数 to_categorical
 

from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_labels, num_classes=None)

所以,我贴一下我的代码。这个代码最终的输出是原图的1/16大小,毕竟我们只是为了说明代码,而不是真的去发paper,越简单越好。

from __future__ import print_function
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import os
import keras
import PIL
from PIL import Image
from keras import Model, Input, optimizers
from keras.applications import vgg16, inception_v3, resnet50, mobilenet
from keras.layers import Conv2D,Lambda,Reshape
from keras.preprocessing.image import ImageDataGenerator, load_img#数据预处理
#下面将我的label从2284*30*40*1 转成2284*1200*14的onehot编码
#2284是图片数量
#14是类别数量
#img和lab是你的图片和标注图片。
#img大小是2284*480*640*3
#lab是2284*480*640
#trainval_list是你的训练和validation数据序号列表,因为2284张图片包含了900多张测试图片,我需要筛一下
img = img./255
img_trainval = img[trainval_list, :, :, :]
mini_lab = lab[:,::16,::16]sum = np.zeros(shape=(2284, 1200, 14))
for i in range(2284):pic_lab = mini_lab[i, :, :]pic_flatten = np.reshape(pic_lab, (1, 1200))pic_onehot = keras.utils.to_categorical(pic_flatten, 14)sum[i] = pic_onehot
lab_trainval = sum[trainval_list, :, :]#网络结构是非常简单的
os.environ['CUDA_VISIBLE_DEVICES']='0'
resnet_model = resnet50.ResNet50(weights = 'imagenet', include_top=False,input_shape = (480,640,3))
layer_name = 'activation_40'
res16 = Model(inputs=resnet_model.input, outputs=resnet_model.get_layer(layer_name).output)
input_real = Input(shape=(480,640,3))
sgd = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
x = res16(input_real)
x = Conv2D(14, (1, 1), activation='relu')(x)
sig_out = Conv2D(14,(1,1),activation = 'sigmoid')(x)
out_reshape = Reshape((1200,14))(sig_out)#配置训练参数
model_simple1 = Model(inputs=input_real, outputs=out_reshape)
model_simple1.summary()
model_simple1.compile(loss="binary_crossentropy", optimizer=sgd, metrics=['accuracy','categorical_accuracy'])
model_simple1.fit(x=img_trainval, y=lab_trainval, epochs=200, shuffle=True, batch_size=2)

训练过程:这里必须说明的是,我把未标注类也加入训练了,所以其实这个代码对于我的数据库还是需要修改的。慢慢来。先解决3D数据的问题好吧。

 

网络结构忘给了:

 warnings.warn('The output shape of `ResNet50(include_top=False)` '
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         (None, 480, 640, 3)       0         
_________________________________________________________________
model_1 (Model)              (None, 30, 40, 1024)      8589184   
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 30, 40, 14)        14350     
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 30, 40, 14)        210       
_________________________________________________________________
reshape_1 (Reshape)          (None, 1200, 14)          0         
=================================================================
Total params: 8,603,744
Trainable params: 8,573,152
Non-trainable params: 30,592
_________________________________________________________________

 

这篇关于keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128439

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S