keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据

本文主要是介绍keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要是keras的示例都是图片分类。而真正的论文代码,又太大了,不适合初学者(比如我)来学习。

所以我查找了一些资料。我在google 上捞的。

其中有个教程让人感觉很好.更完整的教程。另一个教程。

大概就是说,你的输入ground truth label需要是(width*height,class number),然后网络最后需要加个sigmoid,后面用binary_crossentrophy 损失函数。

在说白点就是图片原始标签可能是640,480,1.这样的,你先转成onehot 640,480,13(比如我有13类,一张图片有了一个三维的标注,真是fancy),然后再转成640*480,13这个二维的标注,就是保持深度,图片拉成向量。

然后最后的网络,最后一层的激活函数,要用sigmoid配binary_crossentrophy

或者是softmax 配catahorical_crossentrophy

官网说catagotical_cross rntrophy:

注意: 当使用 categorical_crossentropy 损失时,你的目标值应该是分类格式 (即,如果你有 10 个类,每个样本的目标值应该是一个 10 维的向量,这个向量除了表示类别的那个索引为 1,其他均为 0)。 为了将 整数目标值 转换为 分类目标值,你可以使用 Keras 实用函数 to_categorical
 

from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_labels, num_classes=None)

所以,我贴一下我的代码。这个代码最终的输出是原图的1/16大小,毕竟我们只是为了说明代码,而不是真的去发paper,越简单越好。

from __future__ import print_function
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import os
import keras
import PIL
from PIL import Image
from keras import Model, Input, optimizers
from keras.applications import vgg16, inception_v3, resnet50, mobilenet
from keras.layers import Conv2D,Lambda,Reshape
from keras.preprocessing.image import ImageDataGenerator, load_img#数据预处理
#下面将我的label从2284*30*40*1 转成2284*1200*14的onehot编码
#2284是图片数量
#14是类别数量
#img和lab是你的图片和标注图片。
#img大小是2284*480*640*3
#lab是2284*480*640
#trainval_list是你的训练和validation数据序号列表,因为2284张图片包含了900多张测试图片,我需要筛一下
img = img./255
img_trainval = img[trainval_list, :, :, :]
mini_lab = lab[:,::16,::16]sum = np.zeros(shape=(2284, 1200, 14))
for i in range(2284):pic_lab = mini_lab[i, :, :]pic_flatten = np.reshape(pic_lab, (1, 1200))pic_onehot = keras.utils.to_categorical(pic_flatten, 14)sum[i] = pic_onehot
lab_trainval = sum[trainval_list, :, :]#网络结构是非常简单的
os.environ['CUDA_VISIBLE_DEVICES']='0'
resnet_model = resnet50.ResNet50(weights = 'imagenet', include_top=False,input_shape = (480,640,3))
layer_name = 'activation_40'
res16 = Model(inputs=resnet_model.input, outputs=resnet_model.get_layer(layer_name).output)
input_real = Input(shape=(480,640,3))
sgd = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
x = res16(input_real)
x = Conv2D(14, (1, 1), activation='relu')(x)
sig_out = Conv2D(14,(1,1),activation = 'sigmoid')(x)
out_reshape = Reshape((1200,14))(sig_out)#配置训练参数
model_simple1 = Model(inputs=input_real, outputs=out_reshape)
model_simple1.summary()
model_simple1.compile(loss="binary_crossentropy", optimizer=sgd, metrics=['accuracy','categorical_accuracy'])
model_simple1.fit(x=img_trainval, y=lab_trainval, epochs=200, shuffle=True, batch_size=2)

训练过程:这里必须说明的是,我把未标注类也加入训练了,所以其实这个代码对于我的数据库还是需要修改的。慢慢来。先解决3D数据的问题好吧。

 

网络结构忘给了:

 warnings.warn('The output shape of `ResNet50(include_top=False)` '
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         (None, 480, 640, 3)       0         
_________________________________________________________________
model_1 (Model)              (None, 30, 40, 1024)      8589184   
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 30, 40, 14)        14350     
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 30, 40, 14)        210       
_________________________________________________________________
reshape_1 (Reshape)          (None, 1200, 14)          0         
=================================================================
Total params: 8,603,744
Trainable params: 8,573,152
Non-trainable params: 30,592
_________________________________________________________________

 

这篇关于keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128439

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义