并行 云架构 深度框架 sbatch slurm 深度学习 tensorflow环境从搭建到使用 conda

本文主要是介绍并行 云架构 深度框架 sbatch slurm 深度学习 tensorflow环境从搭建到使用 conda,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有一定的GPU云时常可用,一个节点4个GPU,我本人决定使用anaconda搭建tensorflow1.13并且使用。

anaconda是乙方提供的,使用bash命令可以加载

module load anaconda/3.7

加载后正常使用create命令建立环境

详情见我所有conda标志的博客,其实就是下面一句代码,看明白就不用翻了。

 下面这句代码就从零开始建立了一个tensorflow gpu的环境,版本是1.13,这一句代码,所有的依赖包括cuda,cudnn都保证安装好了。并且不会和任何人包括自己的环境冲突,虚拟环境这个技能真的超级有用且简单。不明白为什么很多人非要看十多篇长达5页的博客,折腾半个月环境,偏偏不愿意花五分钟试试我下面的代码。

conda create --name tenf13 tensorflow-gpu=1.13

上面建立的虚拟环境名字叫做tenf13,名字就是你叫他他就答应的。所以需要点名激活他,你不激活用不了,用完了,你再让他走。虚拟环境就是随叫随到这种的方便,所以可以建立10多种,随便是pytorch,tf,keras,还有各种版本,比如tf1,tf2。

激活环境

注意,必须使用source激活该环境。

source activate tenf13

这个环境就搭建完成了。使用时是这么使用的。

在你的bash代码中。我的实验配置都是用bash代码写得,因为方便。

#!/bin/bash#SBATCH -N 2
#SBATCH --ntasks-per-node=20
#SBATCH -A para
#SBATCH -p gpu
#SBATCH --gres=gpu:4export HOME=/home/tom/project
module load anaconda/3.7
source activate tenf13

实际上就最后两句有用的激活了环境。export HOME这句我觉着可能是定位anaconda的。这两句激活了环境,下面就可以写自己的代码了。比如

#!/bin/bash#SBATCH -N 2
#SBATCH --ntasks-per-node=20
#SBATCH -A para
#SBATCH -p gpu
#SBATCH --gres=gpu:4export HOME=/home/tom/project
module load anaconda/3.7
source activate tenf13python test.py

bash 代码也没什么神秘的,就是平时输入命令行的现在输入在一个文件里面而已。

tensorflow代码

之所以写这个是因为,在配置session的config时,需要特别注意一个参数。

否则会出错:CUB segmented reduce errortoo many resources requested for launch

参考:

https://devtalk.nvidia.com/default/topic/1038115/jetson-tx2/cub-segmented-reduce-errortoo-many-resources-requested-for-launch/

config = tf.ConfigProto()
config.gpu_options.allow_growth = Truesession = tf.Session(config=config, ...)

所以在我的实际代码中我是这么写的:

      # Soft placement allows placing on CPU ops without GPU implementation.session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)#LT add on cloud envsession_config.gpu_options.allow_growth = True

运行与监控

使用sbatch命令可以运行.sh文件。提交的进程会有一个唯一的id,比如会这么回复:

Submitted batch job 6712625

使用squeue可以查看正在运行的id

输出的内容在

slurm-6712625.out

使用vim即可看

 

 

这篇关于并行 云架构 深度框架 sbatch slurm 深度学习 tensorflow环境从搭建到使用 conda的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128400

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时