deeplabv3+二:详细代码解读 data generator 数据生成器

2024-09-01 23:48

本文主要是介绍deeplabv3+二:详细代码解读 data generator 数据生成器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3+支持三种数据库,voc2012,cityscapes,ade20k,

代码文件夹

-deeplab

    -datasets

         -data_generator.py

在开始之前,始终记住,网络模型的输入是非常简单的image,规格化到[-1,1]或[0,1],或者数据扩增(水平翻转,随机裁剪,明暗变化,模糊),以及一个实施了相同数据扩增的label(毕竟需要pixel对上),test的话只需要一个image。是非常简单的数据格式,也许程序员会为了存储的压缩量以及读取处理的速度(指的就是使用tf.example 与 tf.record)写复杂的代码,但是最终的结果始终都是很简单的。

觉得自己一定要先搞清楚tf.example 与tf.record:https://zhuanlan.zhihu.com/p/33223782

 

目录

数据库分析

代码重点类Dataset

1.方法_parse_function()

2. 方法_preprocess_image()

2.1 input_preprocess的preprocess_image_and_label方法介绍

3.方法 _get_all_files(self):

4.方法 get_one_shot_iterator(self)

Class TFRecordDataset

代码使用是在train.py里面:


代码:先放代码,你可以尝试自己看,看得懂就不用往下翻浪费时间了。

# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for providing semantic segmentaion data.The SegmentationDataset class provides both images and annotations (semantic
segmentation and/or instance segmentation) for TensorFlow. Currently, we
support the following datasets:1. PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/).PASCAL VOC 2012 semantic segmentation dataset annotates 20 foreground objects
(e.g., bike, person, and so on) and leaves all the other semantic classes as
one background class. The dataset contains 1464, 1449, and 1456 annotated
images for the training, validation and test respectively.2. Cityscapes dataset (https://www.cityscapes-dataset.com)The Cityscapes dataset contains 19 semantic labels (such as road, person, car,
and so on) for urban street scenes.3. ADE20K dataset (http://groups.csail.mit.edu/vision/datasets/ADE20K)The ADE20K dataset contains 150 semantic labels both urban street scenes and
indoor scenes.References:M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn,and A. Zisserman, The pascal visual object classes challenge a retrospective.IJCV, 2014.M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urbanscene understanding," In Proc. of CVPR, 2016.B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Scene Parsingthrough ADE20K dataset", In Proc. of CVPR, 2017.
"""import collections
import os
import tensorflow as tf
from deeplab import common
from deeplab import input_preprocess# Named tuple to describe the dataset properties.
DatasetDescriptor = collections.namedtuple('DatasetDescriptor',['splits_to_sizes',  # Splits of the dataset into training, val and test.'num_classes',  # Number of semantic classes, including the# background class (if exists). For example, there# are 20 foreground classes + 1 background class in# the PASCAL VOC 2012 dataset. Thus, we set# num_classes=21.'ignore_label',  # Ignore label value.])_CITYSCAPES_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 2975,'val': 500,},num_classes=19,ignore_label=255,
)_PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 1464,'train_aug': 10582,'trainval': 2913,'val': 1449,},num_classes=21,ignore_label=255,
)_ADE20K_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 20210,  # num of samples in images/training'val': 2000,  # num of samples in images/validation},num_classes=151,ignore_label=0,
)_DATASETS_INFORMATION = {'cityscapes': _CITYSCAPES_INFORMATION,'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,'ade20k': _ADE20K_INFORMATION,
}# Default file pattern of TFRecord of TensorFlow Example.
_FILE_PATTERN = '%s-*'def get_cityscapes_dataset_name():return 'cityscapes'class Dataset(object):"""Represents input dataset for deeplab model."""def __init__(self,dataset_name,split_name,dataset_dir,batch_size,crop_size,min_resize_value=None,max_resize_value=None,resize_factor=None,min_scale_factor=1.,max_scale_factor=1.,scale_factor_step_size=0,model_variant=None,num_readers=1,is_training=False,should_shuffle=False,should_repeat=False):"""Initializes the dataset.Args:dataset_name: Dataset name.split_name: A train/val Split name.dataset_dir: The directory of the dataset sources.batch_size: Batch size.crop_size: The size used to crop the image and label.min_resize_value: Desired size of the smaller image side.max_resize_value: Maximum allowed size of the larger image side.resize_factor: Resized dimensions are multiple of factor plus one.min_scale_factor: Minimum scale factor value.max_scale_factor: Maximum scale factor value.scale_factor_step_size: The step size from min scale factor to max scalefactor. The input is randomly scaled based on the v

这篇关于deeplabv3+二:详细代码解读 data generator 数据生成器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128397

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装