昇腾AI处理器的计算核心 - AI Core即DaVinci Core

2024-09-01 22:52

本文主要是介绍昇腾AI处理器的计算核心 - AI Core即DaVinci Core,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

昇腾AI处理器的计算核心 - AI Core即DaVinci Core

flyfish

从一段代码的解释开始

template <typename T>
class GlobalTensor {
public:void setGlobalBuffer(T* buffer, uint32_t buffersize) {// 在这里实现设置全局缓冲区的逻辑}
};

语法的说明,主要用于理解上面的代码,非内部实现
template <typename T>:
这是模板声明。它告诉编译器接下来定义的类或函数是一个模板,T 是一个类型参数。typename 是一个关键字,表示 T 是一种类型(。

class GlobalTensor:
这是定义模板类 GlobalTensor,GlobalTensor 是一个通用类,其内部数据类型由模板参数 T 指定。

通过模板,GlobalTensor 类可以处理不同类型的数据,而无需为每种数据类型编写单独的类。例如,可以创建 GlobalTensor<int> 来处理整数类型的全局数据,或者创建 GlobalTensor<float> 来处理浮点数类型的全局数据。

#include <iostream>// 定义模板类 GlobalTensor
template <typename T>
class GlobalTensor {
public:// 设置全局缓冲区的方法void setGlobalBuffer(T* buffer, uint32_t buffersize) {this->buffer = buffer;this->buffersize = buffersize;}// 打印缓冲区中的内容void printBuffer() const {for (uint32_t i = 0; i < buffersize; ++i) {std::cout << buffer[i] << " ";}std::cout << std::endl;}private:T* buffer;         // 指向缓冲区的指针uint32_t buffersize; // 缓冲区的大小,元素的个数
};int main() {// 创建一个int类型的缓冲区int intBuffer[] = {1, 2, 3, 4, 5};uint32_t intBufferSize = 5;//sizeof(intBuffer) / sizeof(intBuffer[0]);std::cout << sizeof(intBuffer)<<":" <<sizeof(intBuffer[0]) <<std::endl;// 创建一个GlobalTensor<int>实例GlobalTensor<int> intTensor;intTensor.setGlobalBuffer(intBuffer, intBufferSize);std::cout << "Integer buffer: ";intTensor.printBuffer();// 创建一个float类型的缓冲区float floatBuffer[] = {1.1f, 2.2f, 3.3f, 4.4f, 5.5f};uint32_t floatBufferSize = 5;//sizeof(floatBuffer) / sizeof(floatBuffer[0]);// 创建一个GlobalTensor<float>实例GlobalTensor<float> floatTensor;floatTensor.setGlobalBuffer(floatBuffer, floatBufferSize);std::cout << "Float buffer: ";floatTensor.printBuffer();return 0;
}

sizeof(intBuffer) / sizeof(intBuffer[0]) 和 sizeof(floatBuffer) / sizeof(floatBuffer[0]) 这两个表达式确实表示的是缓冲区(数组)中元素的个数。

sizeof(intBuffer):

计算整个 intBuffer 数组的总大小(以字节为单位)。
假设 intBuffer 是一个包含 5 个 int 元素的数组,每个 int 占用 4 个字节,那么 sizeof(intBuffer) 就是 5 * 4 = 20 字节。

sizeof(intBuffer[0]):

计算数组中第一个元素的大小,也就是 int 类型的大小(在大多数系统中是 4 字节)。

sizeof(intBuffer) / sizeof(intBuffer[0]):

用数组的总大小除以单个元素的大小,得到数组中元素的个数。
对于上述例子,计算过程为 20 / 4 = 5,所以这个表达式的结果就是 5,也就是数组中的元素个数。

昇腾 AI Core 架构

在这里插入图片描述
不同于传统的支持通用计算的CPU和GPU,也不同于专用于某种特定算法的专用芯片ASIC(Application Specific Integrated Circuit),AI Core架构本质上是为了适应某个特定领域中的常见应用和算法,通常称为“特定域架构”(Domain Specific Architecture,DSA)。因为不一样所有就起了新的名字 达芬奇。

Al Core内部并行计算架构抽象

使用Ascend C编程语言开发的算子运行在AICore上,AI Core是昇腾AI处理器中的计算核心一个AI处理器内部有多个AICore,AICore中包含计算单元、存储单元、搬运单元等核心组件
在这里插入图片描述

昇腾AI处理器的计算核心主要由AI Core构成,从控制上可以看成是一个相对简化的现代微处理器的基本架构。它包括了三种基础计算资源:。这三种计算单元各司其职,形成了三条独立的执行流水线,在系统软件的统一调度下互相配合达到优化的计算效率。此外在矩阵计算单元和向量计算单元内部还提供了不同精度、不同类型的计算模式。

AI Core内部核心组件

在这里插入图片描述

  1. 计算单元
    AI Core包括了三种基础计算资源:Cube计算单元、Vector计算单元和Scalar计算单元(矩阵计算单元(Cube Unit)、向量计算单元(Vector Unit)和标量计算单元(Scalar Unit))

  2. 存储单元
    存储单元包括内部存储和外部存储:
    AI Core中存在内部存储,AI Core需要把外部存储(通常包括L2、HBM、DDR等)中的数据加载到内部存储中,才能完成相应的计算。AI Core的主要内部存储包括:L1 Buffer(L1缓冲区),L0 Buffer(L0缓冲区),Unified Buffer(统一缓冲区)和Scalar Buffer(标量缓冲区)。

  3. 搬运单元
    DMA(Direct Memory Access)搬运单元:负责在Global Memory和Local Memory之间搬运数据。
    为了配合AI Core中的数据传输和搬运,AI Core中还包含BIU(Bus Interface Unit,总线接口单元),MTE1(Memory Transfer Engine,存储转换引擎),MTE2,MTE3。其中BIU为AI Core与总线交互的接口;MTE为数据搬运单元,完成不同Buffer之间的数据搬运。
    不同类型的昇腾AI处理器,存储单元大小不同,用户可通过get_soc_spec接口获取。

Global Memory

AI Core能够访问的外部存储称之为Global Memory,对应的数据类型为GlobalTensor。

在这里插入图片描述

Local Memory

AI Core的内部存储,统称为Local Memory,对应的数据类型为LocalTensor。由于不同芯片间硬件资源不固定,可以为UB、L1、L0A、L0B等。
在这里插入图片描述

SIMD与SPMD

在这里插入图片描述
Ascend C算子编程是SPMD(Single-Program Multiple-Data)编程
SPMD并行计算示意图在这里插入图片描述

核内(Intra-Core):指的是单个处理核心内部的执行。例如,SIMD 是在一个处理核心内执行的,即核内的并行操作。多个数据元素通过一个核心的 SIMD 单元同时处理。

核间(Inter-Core):指的是多个处理核心之间的协作。SPMD 通常涉及核间的并行处理,即多个核心同时运行相同的程序代码,但处理不同的数据集。

具体关系
SIMD 核内操作:SIMD 是一个核内的并行机制。它利用处理器内的硬件资源来执行单条指令在多个数据上的操作,通常在一个核心内部通过向量处理单元来实现。SIMD 不涉及多个核心之间的协作,而是关注如何在单个核心内高效利用并行性。

SPMD 核间协作:SPMD 则更多涉及核间的协作。多个核心(或多个线程)同时运行相同的程序,但各自操作不同的数据。每个核心运行的程序可以是独立的,程序中的不同实例可能根据处理的数据不同而采取不同的执行路径。这意味着多个核心之间协作来完成更大规模的并行计算任务。

这篇关于昇腾AI处理器的计算核心 - AI Core即DaVinci Core的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128277

相关文章

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

详解MySQL中DISTINCT去重的核心注意事项

《详解MySQL中DISTINCT去重的核心注意事项》为了实现查询不重复的数据,MySQL提供了DISTINCT关键字,它的主要作用就是对数据表中一个或多个字段重复的数据进行过滤,只返回其中的一条数据... 目录DISTINCT 六大注意事项1. 作用范围:所有 SELECT 字段2. NULL 值的特殊处

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,