【数据结构初阶】二叉树--堆(顺序结构实现)

2024-09-01 22:28

本文主要是介绍【数据结构初阶】二叉树--堆(顺序结构实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

hello!

目录

一、实现顺序结构二叉树

1.1  堆的概念和结构

1.2  堆及二叉树的性质

1.3  堆的实现

1.3.1  创建堆的结构

1.3.2  初始化和销毁

1.3.3  入堆+向上调整算法(创建一个小堆)

1.3.4  出堆+向下调整算法(小堆)

1.3.5  判空+取堆顶数据+堆中有效数据个数

二、顺序结构二叉树---源码

Heap.h

Heap.c

test.c

Relaxing Time!

—————————————  《星空物语》  —————————————


正文开始——

一、实现顺序结构二叉树

一般使用顺序结构的数组来存储数据,堆是一种特殊的二叉树,分为大根堆(大堆)和小根堆(小堆),具有二叉树的特性的同时,还具备其他的特性。

1.1  堆的概念和结构

如果有一个关键码的集合K={k1,k2,,k3,...,k(n-1)},把它的所有元素按完全二叉树的顺序存储方式存储,在一个一维数组中,并满足:Ki <= K(2*i+1)(Ki >= K(2*i+1) 且 Ki >= K(2*i+2)),i = 0,1,2...,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆大根堆,根节点最小的堆叫做最小堆小根堆

小堆:父结点不大于孩子结点;大堆:父结点不小于孩子结点。

数组不一定是有序地。小堆堆顶是堆的最小值,大堆堆顶是堆的最大值。 

1.2  堆及二叉树的性质

堆的性质

  • 堆中某个结点的值总是不大于或不小于其父结点的值;
  • 堆总是一棵完全二叉树。

二叉树的性质

  • 对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为 i 的结点有:
  1.  若 i > 0,i 位置结点的双亲序号:( i - 1)/ 2;i = 0,i 为根结点编号,无双亲结点;
  2. 若 2i + 1 < n,左孩子序号:2i + 1,2i + 1 >= n 则无左孩子;
  3. 若 2i + 2 < n,右孩子序号:2i + 2,2i + 2 >= n 则无右孩子;

通俗点来讲,父结点i---> 左孩子:2i+1,右孩子:2i+2。

1.3  堆的实现

1.3.1  创建堆的结构

堆的底层结构是数组 

//创建堆的结构
typedef int HPDataType;
typedef struct Heap
{HPDataType* arr;int size;//堆中有效数据的个数int capacity;//堆的容量
}HP;

1.3.2  初始化和销毁

//初始化
void HPInit(HP* php)
{assert(php);php->arr = NULL;php->size = php->capacity = 0;
}//销毁
void HPDestroy(HP* php)
{assert(php);if(php->arr){free(php->arr);php->arr = NULL;}php->size = php->capacity = 0;}

1.3.3  入堆+向上调整算法(创建一个小堆)

将新数据插入到数组的尾上,再进行向上调整算法,直到满足堆。

向上调整算法

  • 先将元素插入到堆的末尾,即最后一个子结点之后;
  • 插入之后如果堆的性质遭到破坏,将新插入结点顺着双亲结点往上调整到合适位置即可。 

【举例,向上调整算法】

思路:新插入的数据作为子结点(child),找到新插入数据的父结点(parent=(child-1)/ 2)(上面二叉树的性质),父结点和子结点进行比较,若父结点大于子结点,数据交换,不大于则不交换。再找新的父结点和子结点,循环条件是 child>0,child不需要等于0,child等于0时为根结点,根结点没有父结点不需要发生交换。

void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//向上调整算法
void AdjustUp(HPDataType* arr, int child)
{int parent = (child - 1) / 2;while (child > 0){if (arr[child] < arr[parent]){Swap(&arr[child], &arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//入堆
void HPPush(HP* php, HPDataType x)
{assert(php);//判断空间是否充足if (php->size == php->capacity){int newCapacity = php->capacity == 0 ? 4 : 2 * php->capacity;HPDataType* tmp = (HPDataType*)realloc(php->arr, newCapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc file!");exit(1);}php->arr = tmp;php->capacity = newCapacity;}//此时空间已经充足//我们应该清楚地知道,size是x的下标,size在数组中指向x这个元素php->arr[php->size] = x;//向上调整算法AdjustUp(php->arr, php->size);php->size++;
}

1.3.4  出堆+向下调整算法(小堆)

堆的删除(出堆)

删除堆是删除堆顶的数据,将堆顶的数据跟最后一个数据进行交换,然后删除数组最后一个数据,再进行向下调整算法。

向下调整算法有一个前提:左右子树必须是一个堆,才能进行调整。

出堆

  • 将堆顶元素与堆中最后一个元素进行交换;
  • 删除堆中最后一个元素;
  • 将堆顶元素向下调整到满足堆特性为止。

 【向下调整算法】

思路:堆顶元素为父结点,找到左右孩子中最小的那个子结点与之比较,若父结点大于子结点,交换,不大于则不交换,不断找新的父结点和子结点,就这样循环,注意循环结束的条件。上代码,结合代码中的注释更好的理解。

//向下调整算法
void AdjustDown(HPDataType* arr, int parent, int n)
{int child = parent * 2 + 1;//左孩子while (child < n){//找左右孩子中最小的//child + 1 < n , 保证不越界if (child + 1 < n && arr[child] > arr[child + 1]){child++;}if (arr[parent] > arr[child]){Swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//出堆
void HPPop(HP* php)
{assert(php && php->size);Swap(&php->arr[0], &php->arr[php->size-1]);php->size--;//删除掉最后一个数据(堆顶元素)//向下调整算法AdjustDown(php->arr, 0, php->size);}

1.3.5  判空+取堆顶数据+堆中有效数据个数

//判空
bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}//取堆顶数据
HPDataType HPTop(HP* php)
{assert(php && php->size);return php->arr[0];
}//堆中有效数据的个数
int HPSize(HP* php)
{assert(php);return php->size;
}

二、顺序结构二叉树---源码

Heap.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>//创建堆的结构
typedef int HPDataType;
typedef struct Heap
{int* arr;int size;//堆中有效数据个数int capacity;//堆的容量
}HP;//初始化
void HPInit(HP* php);//销毁
void HPDestroy(HP* php);//入堆
void HPPush(HP* php, HPDataType x);//出堆
void HPPop(HP* php);//判空
bool HPEmpty(HP* php);//取堆顶数据
HPDataType HPTop(HP* php);//堆中有效数据的个数
int HPSize(HP* php);

Heap.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"//初始化
void HPInit(HP* php)
{assert(php);php->arr = NULL;php->size = php->capacity = 0;
}//销毁
void HPDestroy(HP* php)
{assert(php);if (php->arr){free(php->arr);php->arr = NULL;}
}void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//向上调整算法
void AdjustUp(HPDataType* arr, int child)
{int parent = (child - 1) / 2;while (child > 0)//不需要等于0,child等于0时为根结点,根结点没有父结点不需要发生交换{if (arr[child] < arr[parent]){Swap(&arr[child], &arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//入堆
void HPPush(HP* php,HPDataType x)
{assert(php);//判断空间是否充足if (php->size == php->capacity){int newCapacity = php->capacity == 0 ? 4 : 2 * php->capacity;HPDataType* tmp = (HPDataType*)realloc(php->arr, newCapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc file!");exit(1);}php->arr = tmp;php->capacity = newCapacity;}//此时空间已经充足php->arr[php->size] = x;//向上调整算法AdjustUp(php->arr, php->size);php->size++;}//向下调整算法
void AdjustDown(HPDataType* arr, int parent, int n)
{int child = parent * 2 + 1;//左孩子while (child < n){//找左右孩子中最小的if (child + 1 < n && arr[child] > arr[child + 1]){child++;}if (arr[parent] > arr[child]){Swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//出堆
void HPPop(HP* php)
{assert(php && php->size);Swap(&php->arr[0], &php->arr[php->size-1]);php->size--;//向下调整算法AdjustDown(php->arr, 0, php->size);}//判空
bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}//取堆顶数据
HPDataType HPTop(HP* php)
{assert(php && php->size);return php->arr[0];
}//堆中有效数据的个数
int HPSize(HP* php)
{assert(php);return php->size;
}

test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"void test01()
{HP hp;HPInit(&hp);int arr[] = { 1,3,5,7,4,10,8 };for (int i = 0; i < 7; i++){HPPush(&hp, arr[i]);}printf("堆中有效数据个数:%d\n", HPSize(&hp));while (!HPEmpty(&hp)){printf("%d ", HPTop(&hp));HPPop(&hp);}HPDestroy(&hp);}int main()
{test01();return 0;
}

完——


Relaxing Time!

—————————————  《星空物语》  —————————————

星空物语(电视剧《一起来看流星雨》主题曲) - 张翰/朱梓骁/魏晨/俞灏明 - 单曲 - 网易云音乐

我是云边有个稻草人

期待与你的下一次相遇——

这篇关于【数据结构初阶】二叉树--堆(顺序结构实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128219

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直