Python操作数据库的ORM框架SQLAlchemy快速入门教程

2024-09-01 17:44

本文主要是介绍Python操作数据库的ORM框架SQLAlchemy快速入门教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

连接内存版SQLIte

from sqlalchemy import create_engineengine = create_engine('sqlite:///:memory:')
print(engine)

连接文件版SQLite

from sqlalchemy import create_engineengine = create_engine('sqlite:///sqlite3.db')
print(engine)

连接MySQL数据库

from sqlalchemy import create_engineengine = create_engine('mysql+pymysql://root:zhangdapeng520@127.0.0.1:3306/fastzdp_sqlalchemy?charset=utf8')
print(engine)

根据模型自动创建表


import enum
from datetime import datetime
from decimal import Decimalimport sqlalchemy
from sqlalchemy import create_engine, DateTime, func, String
from sqlalchemy.orm import Mapped, DeclarativeBase, mapped_columnengine = create_engine('mysql+pymysql://root:zhangdapeng520@127.0.0.1:3306/fastzdp_sqlalchemy?charset=utf8')class BaseModel(DeclarativeBase):"""基础模型"""id: Mapped[int] = mapped_column(primary_key=True, autoincrement=True)create_time: Mapped[datetime] = mapped_column(DateTime, insert_default=func.now(), comment="创建时间")update_time: Mapped[datetime] = mapped_column(DateTime, insert_default=func.now(), onupdate=func.now(),comment="更新时间")class GenderEnum(enum.Enum):MALE = "男"FEMALE = "女"class Employee(BaseModel):"""员工模型,对应员工表"""__tablename__ = 'employee'name: Mapped[str] = mapped_column(String(36), index=True, nullable=False, comment="姓名")age: Mapped[int] = mapped_column(comment="年龄")salary: Mapped[Decimal] = mapped_column(sqlalchemy.DECIMAL, nullable=False, comment="薪资")bonus: Mapped[float] = mapped_column(sqlalchemy.FLOAT, default=0, comment="奖金")is_leave: Mapped[bool] = mapped_column(sqlalchemy.Boolean, default=False, comment="是否离职")gender: Mapped[GenderEnum] = mapped_column(sqlalchemy.String(6), default=GenderEnum.MALE, comment="性别")if __name__ == '__main__':BaseModel.metadata.drop_all(engine)BaseModel.metadata.create_all(engine)

通过session新增数据

with Session(engine) as session:session.begin()try:session.add(Employee(name="张三", age=23, salary=Decimal(30000),gender=GenderEnum.MALE.value))except:session.rollback()session.commit()

通过sessionmaker添加数据

with sessionmaker(engine).begin() as session:session.add(Employee(name="李四", age=23, salary=Decimal(30000), gender=GenderEnum.MALE.value))

批量新增数据

with sessionmaker(engine).begin() as session:employees = [Employee(name="张三1", age=23, salary=Decimal(30000), gender=GenderEnum.MALE.value),Employee(name="张三2", age=23, salary=Decimal(30000), gender=GenderEnum.MALE.value),Employee(name="张三3", age=23, salary=Decimal(30000), gender=GenderEnum.MALE.value),]session.add_all(employees)

根据ID查询

with sessionmaker(engine).begin() as session:employee = session.get(Employee, 1)print(employee.name)

查询所有的数据

with sessionmaker(engine).begin() as session:query = select(Employee)data = session.scalars(query).all()print(data)for employee in data:print(employee.name, employee.age)

查询指定字段


with sessionmaker(engine).begin() as session:query = select(Employee.id, Employee.name, Employee.age)data = session.execute(query).all()print(data)for employee in data:  # rowprint(employee.name, employee.age)

执行原生SQL语句进行查询


with sessionmaker(engine).begin() as session:query = sqlalchemy.text("select id,name,age from employee")data = session.execute(query).all()print(data)for employee in data:  # rowprint(employee.name, employee.age)

根据ID修改数据


with sessionmaker(engine).begin() as session:employee = session.get(Employee, 1)employee.name = "张三333"

执行update方法


with sessionmaker(engine).begin() as session:query = sqlalchemy.update(Employee).where(Employee.id == 1).values(name="张三", age=33)session.execute(query)

根据ID删除数据

with sessionmaker(engine).begin() as session:employee = session.get(Employee, 1)session.delete(employee)

执行delete方法

with sessionmaker(engine).begin() as session:query = sqlalchemy.delete(Employee).where(Employee.id == 2)session.execute(query)

执行is null查询

with sessionmaker(engine).begin() as session:query = select(Employee).where(Employee.salary.is_(None))  # is nullemployees = session.execute(query).scalars()print(employees)

执行is not null查询

with sessionmaker(engine).begin() as session:query = select(Employee).where(Employee.salary.isnot(None))  # is not nullemployees = session.execute(query).scalars()print(employees)for employee in employees:print(employee.name, employee.age, employee.salary, employee.bonus, employee.is_leave)

执行like模糊查询

with sessionmaker(engine).begin() as session:query = select(Employee).where(Employee.name.like("%3"))  # like 模糊查询employees = session.execute(query).scalars()print(employees)for employee in employees:print(employee.name, employee.age, employee.salary, employee.bonus, employee.is_leave)

执行in查询


with sessionmaker(engine).begin() as session:query = select(Employee).where(Employee.id.in_([3, 5]))  # in 查询employees = session.execute(query).scalars()print(employees)for employee in employees:print(employee.name, employee.age, employee.salary, employee.bonus, employee.is_leave)

执行or查询

with sessionmaker(engine).begin() as session:query = select(Employee).where(sqlalchemy.or_(Employee.age < 20, Employee.age > 30))  # or 查询employees = session.execute(query).scalars()print(employees)for employee in employees:print(employee.name, employee.age, employee.salary, employee.bonus, employee.is_leave)

求平均薪资

with sessionmaker(engine).begin() as session:query = select(func.avg(Employee.salary))avg = session.execute(query).first()print(avg)

统计表中的数据个数

with sessionmaker(engine).begin() as session:query = select(func.count(Employee.id))id_count = session.execute(query).first()print(id_count)

执行分页查询

with sessionmaker(engine).begin() as session:query = select(Employee).offset(2).limit(2)data = session.execute(query).scalars()for employee in data:print(employee.id, employee.name)

执行排序查询

with sessionmaker(engine).begin() as session:# query = select(Employee).order_by(Employee.age.desc()) # 降序query = select(Employee).order_by(Employee.age)  # 升序data = session.execute(query).scalars()for employee in data:print(employee.id, employee.name, employee.age)

执行分组聚合查询

with sessionmaker(engine).begin() as session:query = select(Employee.gender, func.count(Employee.id)).group_by(Employee.gender)data = session.execute(query).all()for row in data:print(row.gender, row.count)

这篇关于Python操作数据库的ORM框架SQLAlchemy快速入门教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1127621

相关文章

Python FastAPI实现JWT校验的完整指南

《PythonFastAPI实现JWT校验的完整指南》在现代Web开发中,构建安全的API接口是开发者必须面对的核心挑战之一,本文将深入探讨如何基于FastAPI实现JWT(JSONWebToken... 目录一、JWT认证的核心原理二、项目初始化与环境配置三、安全密码处理机制四、JWT令牌的生成与验证五、

Python使用Turtle实现精确计时工具

《Python使用Turtle实现精确计时工具》这篇文章主要为大家详细介绍了Python如何使用Turtle实现精确计时工具,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录功能特点使用方法程序架构设计代码详解窗口和画笔创建时间和状态显示更新计时器控制逻辑计时器重置功能事件

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

MySQL数据库实现批量表分区完整示例

《MySQL数据库实现批量表分区完整示例》通俗地讲表分区是将一大表,根据条件分割成若干个小表,:本文主要介绍MySQL数据库实现批量表分区的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录一、表分区条件二、常规表和分区表的区别三、表分区的创建四、将既有表转换分区表脚本五、批量转换表为分区

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失