Python操作数据库的ORM框架SQLAlchemy快速入门教程

2024-09-01 17:44

本文主要是介绍Python操作数据库的ORM框架SQLAlchemy快速入门教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

连接内存版SQLIte

from sqlalchemy import create_engineengine = create_engine('sqlite:///:memory:')
print(engine)

连接文件版SQLite

from sqlalchemy import create_engineengine = create_engine('sqlite:///sqlite3.db')
print(engine)

连接MySQL数据库

from sqlalchemy import create_engineengine = create_engine('mysql+pymysql://root:zhangdapeng520@127.0.0.1:3306/fastzdp_sqlalchemy?charset=utf8')
print(engine)

根据模型自动创建表


import enum
from datetime import datetime
from decimal import Decimalimport sqlalchemy
from sqlalchemy import create_engine, DateTime, func, String
from sqlalchemy.orm import Mapped, DeclarativeBase, mapped_columnengine = create_engine('mysql+pymysql://root:zhangdapeng520@127.0.0.1:3306/fastzdp_sqlalchemy?charset=utf8')class BaseModel(DeclarativeBase):"""基础模型"""id: Mapped[int] = mapped_column(primary_key=True, autoincrement=True)create_time: Mapped[datetime] = mapped_column(DateTime, insert_default=func.now(), comment="创建时间")update_time: Mapped[datetime] = mapped_column(DateTime, insert_default=func.now(), onupdate=func.now(),comment="更新时间")class GenderEnum(enum.Enum):MALE = "男"FEMALE = "女"class Employee(BaseModel):"""员工模型,对应员工表"""__tablename__ = 'employee'name: Mapped[str] = mapped_column(String(36), index=True, nullable=False, comment="姓名")age: Mapped[int] = mapped_column(comment="年龄")salary: Mapped[Decimal] = mapped_column(sqlalchemy.DECIMAL, nullable=False, comment="薪资")bonus: Mapped[float] = mapped_column(sqlalchemy.FLOAT, default=0, comment="奖金")is_leave: Mapped[bool] = mapped_column(sqlalchemy.Boolean, default=False, comment="是否离职")gender: Mapped[GenderEnum] = mapped_column(sqlalchemy.String(6), default=GenderEnum.MALE, comment="性别")if __name__ == '__main__':BaseModel.metadata.drop_all(engine)BaseModel.metadata.create_all(engine)

通过session新增数据

with Session(engine) as session:session.begin()try:session.add(Employee(name="张三", age=23, salary=Decimal(30000),gender=GenderEnum.MALE.value))except:session.rollback()session.commit()

通过sessionmaker添加数据

with sessionmaker(engine).begin() as session:session.add(Employee(name="李四", age=23, salary=Decimal(30000), gender=GenderEnum.MALE.value))

批量新增数据

with sessionmaker(engine).begin() as session:employees = [Employee(name="张三1", age=23, salary=Decimal(30000), gender=GenderEnum.MALE.value),Employee(name="张三2", age=23, salary=Decimal(30000), gender=GenderEnum.MALE.value),Employee(name="张三3", age=23, salary=Decimal(30000), gender=GenderEnum.MALE.value),]session.add_all(employees)

根据ID查询

with sessionmaker(engine).begin() as session:employee = session.get(Employee, 1)print(employee.name)

查询所有的数据

with sessionmaker(engine).begin() as session:query = select(Employee)data = session.scalars(query).all()print(data)for employee in data:print(employee.name, employee.age)

查询指定字段


with sessionmaker(engine).begin() as session:query = select(Employee.id, Employee.name, Employee.age)data = session.execute(query).all()print(data)for employee in data:  # rowprint(employee.name, employee.age)

执行原生SQL语句进行查询


with sessionmaker(engine).begin() as session:query = sqlalchemy.text("select id,name,age from employee")data = session.execute(query).all()print(data)for employee in data:  # rowprint(employee.name, employee.age)

根据ID修改数据


with sessionmaker(engine).begin() as session:employee = session.get(Employee, 1)employee.name = "张三333"

执行update方法


with sessionmaker(engine).begin() as session:query = sqlalchemy.update(Employee).where(Employee.id == 1).values(name="张三", age=33)session.execute(query)

根据ID删除数据

with sessionmaker(engine).begin() as session:employee = session.get(Employee, 1)session.delete(employee)

执行delete方法

with sessionmaker(engine).begin() as session:query = sqlalchemy.delete(Employee).where(Employee.id == 2)session.execute(query)

执行is null查询

with sessionmaker(engine).begin() as session:query = select(Employee).where(Employee.salary.is_(None))  # is nullemployees = session.execute(query).scalars()print(employees)

执行is not null查询

with sessionmaker(engine).begin() as session:query = select(Employee).where(Employee.salary.isnot(None))  # is not nullemployees = session.execute(query).scalars()print(employees)for employee in employees:print(employee.name, employee.age, employee.salary, employee.bonus, employee.is_leave)

执行like模糊查询

with sessionmaker(engine).begin() as session:query = select(Employee).where(Employee.name.like("%3"))  # like 模糊查询employees = session.execute(query).scalars()print(employees)for employee in employees:print(employee.name, employee.age, employee.salary, employee.bonus, employee.is_leave)

执行in查询


with sessionmaker(engine).begin() as session:query = select(Employee).where(Employee.id.in_([3, 5]))  # in 查询employees = session.execute(query).scalars()print(employees)for employee in employees:print(employee.name, employee.age, employee.salary, employee.bonus, employee.is_leave)

执行or查询

with sessionmaker(engine).begin() as session:query = select(Employee).where(sqlalchemy.or_(Employee.age < 20, Employee.age > 30))  # or 查询employees = session.execute(query).scalars()print(employees)for employee in employees:print(employee.name, employee.age, employee.salary, employee.bonus, employee.is_leave)

求平均薪资

with sessionmaker(engine).begin() as session:query = select(func.avg(Employee.salary))avg = session.execute(query).first()print(avg)

统计表中的数据个数

with sessionmaker(engine).begin() as session:query = select(func.count(Employee.id))id_count = session.execute(query).first()print(id_count)

执行分页查询

with sessionmaker(engine).begin() as session:query = select(Employee).offset(2).limit(2)data = session.execute(query).scalars()for employee in data:print(employee.id, employee.name)

执行排序查询

with sessionmaker(engine).begin() as session:# query = select(Employee).order_by(Employee.age.desc()) # 降序query = select(Employee).order_by(Employee.age)  # 升序data = session.execute(query).scalars()for employee in data:print(employee.id, employee.name, employee.age)

执行分组聚合查询

with sessionmaker(engine).begin() as session:query = select(Employee.gender, func.count(Employee.id)).group_by(Employee.gender)data = session.execute(query).all()for row in data:print(row.gender, row.count)

这篇关于Python操作数据库的ORM框架SQLAlchemy快速入门教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127621

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码