NumPy实现logistic回归

2024-09-01 15:44
文章标签 实现 logistic 回归 numpy

本文主要是介绍NumPy实现logistic回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.sklearn实现

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import sys
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import  r2_score,confusion_matrixcurrent_dir=os.getcwd()
path = current_dir +"\\" +"BreastCancer.csv";cancer = pd.read_csv(path)cancer = cancer.drop(["id","Unnamed: 32"], axis=1)  # axis = 1, drop a column, axis = 0, drop a row
cancer['diagnosis'] = [ 1 if i == "M" else 0 for i in cancer['diagnosis'] ]y = cancer['diagnosis']                       # (569,)
x = cancer.drop(["diagnosis"], axis=1) # (569, 30)# (455, 30) (114, 30) (455,) (114,)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)# 标准化处理,每一列求mean和std,然后X_scaled = (x-mean)/std
# 让每一列的数据,均值为0,方差为1. 否则会内存溢出
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)logreg = LogisticRegression(max_iter = 1000)
logreg.fit(x_train_scaled, y_train)train_accuracy = logreg.score(x_train_scaled, y_train)  # 0.989010989010989
test_accuracy = logreg.score(x_test_scaled, y_test)     # 0.9649122807017544
print("Training Accuracy:", train_accuracy)
print("Test Accuracy:", test_accuracy)y_pred = logreg.predict(x_test_scaled)
r2 = r2_score(y_test,y_pred)         # Test R2: 0.8551921244839632
print("Test R2:", r2)print ( confusion_matrix(y_test,y_pred) )
"""
[[65  2][ 2 45]]
"""

2. NumPy实现

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import sys
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import confusion_matrixclass Logistic:def __init__(self,learning_rate = 0.01, epochs = 1000, verbose= False):self.lr = learning_rateself.epochs = epochsself.verbose = verboseself.weight = Noneself.bias = Nonedef sigmoid(self,x):z = 1 / (1 + np.exp(-x))return zdef initialise_weights(self,n):self.weight = np.zeros(n)self.bias = 0def predict_prob(self,X):linear_result = X @ self.weight + self.biasy_pred = self.sigmoid(linear_result)return y_preddef fit(self,X,y):m , n = X.shapeself.initialise_weights(n)for epoch in range(self.epochs):y_pred = self.predict_prob(X)error = (y_pred - y)dcost_dw = (1/m) * ( X.T @ error )dcost_db = (1/m) * np.sum( error )self.weight -= self.lr * dcost_dwself.bias -= self.lr * dcost_dbif self.verbose and epoch % 100 == 99:loss = (-1 / m) *np.sum(y*np.log(y_pred) + (1-y) * np.log(1-y_pred))print(f"epoch:{epoch} loss:{loss}")def predict(self,X):y_pred = self.predict_prob(X)y_pred = np.where(y_pred>=0.5,1,0)return y_predcurrent_dir=os.getcwd()
path = current_dir +"\\" +"BreastCancer.csv";cancer = pd.read_csv(path)cancer = cancer.drop(["id","Unnamed: 32"], axis=1)  # axis = 1, drop a column, axis = 0, drop a row
cancer['diagnosis'] = [ 1 if i == "M" else 0 for i in cancer['diagnosis'] ]print(cancer.shape) # (569, 31)y = cancer['diagnosis']                       # (569,)
x = cancer.drop(["diagnosis"], axis=1) # (569, 30)# (455, 30) (114, 30) (455,) (114,),类型是DataFrame
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
x_train,x_test,y_train,y_test = np.array(x_train),np.array(x_test),np.array(y_train),np.array(y_test) # 转为ndarray矩阵格式scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)logistic = Logistic(learning_rate = 0.01, epochs = 1000, verbose = True)
logistic.fit(x_train_scaled,y_train)y_pred = logistic.predict(x_test_scaled)r2 = r2_score(y_test,y_pred)
print(r2)print ( confusion_matrix(y_test,y_pred) )
"""
[[65  2][ 2 45]]
"""

这篇关于NumPy实现logistic回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127366

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q