基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)

本文主要是介绍基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        梯度提升(Gradient Boosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。

梯度提升分类的工作原理

        梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:

  1. 初始化模型:选择一个初始预测器,这里使用DummyClassifier来作为第一个模型。
  2. 计算梯度:计算每个样本的梯度,梯度是当前预测值与真实标签之间的差异。
  3. 训练新预测器:用计算得到的梯度作为目标,训练一个新的分类器。
  4. 更新模型:将新预测器的结果加到现有模型中。
  5. 重复步骤:重复上述步骤,逐步添加更多的预测器以改进模型的分类能力。

二分类示例

        在二分类任务中,梯度提升分类器的工作流程如下:

  1. 预测概率:通过softmax将预测值转换为概率。
  2. 更新模型:利用当前的梯度来训练下一个分类器。

代码示例

        下面的代码示例展示了如何实现一个梯度提升分类器,包括支持二分类和多分类任务:

from sklearn.tree import DecisionTreeRegressor
from sklearn.dummy import DummyRegressor, DummyClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits, load_breast_cancer
import numpy as npclass GradientBoosting:def __init__(self, S=5, learning_rate=1, max_depth=1, min_samples_split=2, regression=True, tol=1e-4):self.S = Sself.learning_rate = learning_rateself.max_depth = max_depthself.min_samples_split = min_samples_splitself.regression = regression# 初始化回归树tree_params = {'max_depth': self.max_depth, 'min_samples_split': self.min_samples_split}self.models = [DecisionTreeRegressor(**tree_params) for _ in range(S)]if regression:# 回归模型的初始模型self.models.insert(0, DummyRegressor(strategy='mean'))else:# 分类模型的初始模型self.models.insert(0, DummyClassifier(strategy='most_frequent'))def grad(self, y, h):return y - hdef fit(self, X, y):# 训练第一个模型self.models[0].fit(X, y)for i in range(self.S):# 预测yhat = self.predict(X, self.models[:i+1], with_argmax=False)# 计算梯度gradient = self.grad(y, yhat)# 训练下一个模型self.models[i+1].fit(X, gradient)def predict(self, X, models=None, with_argmax=True):if models is None:models = self.modelsh0 = models[0].predict(X)boosting = sum(self.learning_rate * model.predict(X) for model in models[1:])yhat = h0 + boostingif not self.regression:# 使用softmax转换为概率yhat = np.exp(yhat) / np.sum(np.exp(yhat), axis=1, keepdims=True)if with_argmax:yhat = np.argmax(yhat, axis=1)return yhat# 示例:使用乳腺癌数据集进行二分类
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建和训练梯度提升分类器
gb = GradientBoosting(S=50, learning_rate=0.1, regression=False)
gb.fit(X_train, y_train)# 预测并计算准确率
y_pred = gb.predict(X_test)
from sklearn.metrics import accuracy_score
print(f'Accuracy: {accuracy_score(y_test, y_pred)}')

总结

        梯度提升分类器通过逐步减少分类错误来提高模型的性能。这种方法在处理分类任务时,能够有效提高预测准确率。与回归任务类似,分类任务中的梯度提升也能通过逐步添加预测器来优化模型。通过调整学习率和模型参数,我们可以进一步提高模型的表现。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127325

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以