【书生大模型实战营】进阶岛 第2关 Lagent 自定义你的 Agent 智能体

2024-09-01 14:52

本文主要是介绍【书生大模型实战营】进阶岛 第2关 Lagent 自定义你的 Agent 智能体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 【书生大模型实战营】进阶岛 第2关 Lagent 自定义你的 Agent 智能体
  • 学习任务
  • Lagent 介绍
  • 环境配置
  • Lagent Web Demo 使用
  • 基于 Lagent 自定义智能体

【书生大模型实战营】进阶岛 第2关 Lagent 自定义你的 Agent 智能体

学习任务

使用 Lagent 自定义一个智能体,并使用 Lagent Web Demo 成功部署与调用

Lagent 介绍

Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。

Lagent 目前已经支持了包括 AutoGPT、ReAct 等在内的多个经典智能体范式,也支持了如下工具:
Arxiv 搜索
Bing 地图
Google 学术搜索
Google 搜索
交互式 IPython 解释器
IPython 解释器
PPT
Python 解释器

其基本结构如下所示:
在这里插入图片描述

环境配置

开发机选择 30% A100,镜像选择为 Cuda12.2-conda。

首先来为 Lagent 配置一个可用的环境。

#创建环境
conda create -n agent_camp3 python=3.10 -y
#激活环境
conda activate agent_camp3
#安装 torch
conda install pytorch2.1.2 torchvision0.16.2 torchaudio2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
#安装其他依赖包
pip install termcolor
2.4.0
pip install lmdeploy==0.5.2
接下来,我们通过源码安装的方式安装 lagent。

#创建目录以存放代码
mkdir -p /root/agent_camp3
cd /root/agent_camp3
git clone https://github.com/InternLM/lagent.git
cd lagent && git checkout 81e7ace && pip install -e . && cd …

Lagent Web Demo 使用

接下来,我们将使用 Lagent 的 Web Demo 来体验 InternLM2.5-7B-Chat 的智能体能力。

首先,我们先使用 LMDeploy 部署 InternLM2.5-7B-Chat,并启动一个 API Server。

conda activate agent_camp3
lmdeploy serve api_server /share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat --model-name internlm2_5-7b-chat
在这里插入图片描述
然后,我们在另一个窗口中启动 Lagent 的 Web Demo。

cd /root/agent_camp3/lagent
conda activate agent_camp3
streamlit run examples/internlm2_agent_web_demo.py

在这里插入图片描述
在等待两个 server 都完全启动(如下图所示)后,我们在 本地 的 PowerShell 中输入如下指令来进行端口映射:

ssh -CNg -L 8501:127.0.0.1:8501 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p <你的 SSH 端口号>
在这里插入图片描述
报错
经检查,可能由于版本不匹配导致
重新安装后
pip install griffe==0.49.0
在这里插入图片描述

基于 Lagent 自定义智能体

在本节中,我们将带大家基于 Lagent 自定义自己的智能体。

Lagent 中关于工具部分的介绍文档位于 https://lagent.readthedocs.io/zh-cn/latest/tutorials/action.html 。

使用 Lagent 自定义工具主要分为以下几步:

继承 BaseAction 类
实现简单工具的 run 方法;或者实现工具包内每个子工具的功能
简单工具的 run 方法可选被 tool_api 装饰;工具包内每个子工具的功能都需要被 tool_api 装饰
下面我们将实现一个调用 MagicMaker API 以完成文生图的功能。

首先,我们先来创建工具文件:

cd /root/agent_camp3/lagent
touch lagent/actions/magicmaker.py
然后,我们将下面的代码复制进入 /root/agent_camp3/lagent/lagent/actions/magicmaker.py

import json
import requests

from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode

class MagicMaker(BaseAction):
styles_option = [
‘dongman’, # 动漫
‘guofeng’, # 国风
‘xieshi’, # 写实
‘youhua’, # 油画
‘manghe’, # 盲盒
]
aspect_ratio_options = [
‘16:9’, ‘4:3’, ‘3:2’, ‘1:1’,
‘2:3’, ‘3:4’, ‘9:16’
]

def __init__(self,style='guofeng',aspect_ratio='4:3'):super().__init__()if style in self.styles_option:self.style = styleelse:raise ValueError(f'The style must be one of {self.styles_option}')if aspect_ratio in self.aspect_ratio_options:self.aspect_ratio = aspect_ratioelse:raise ValueError(f'The aspect ratio must be one of {aspect_ratio}')@tool_api
def generate_image(self, keywords: str) -> dict:"""Run magicmaker and get the generated image according to the keywords.Args:keywords (:class:`str`): the keywords to generate imageReturns::class:`dict`: the generated image* image (str): path to the generated image"""try:response = requests.post(url='https://magicmaker.openxlab.org.cn/gw/edit-anything/api/v1/bff/sd/generate',data=json.dumps({"official": True,"prompt": keywords,"style": self.style,"poseT": False,"aspectRatio": self.aspect_ratio}),headers={'content-type': 'application/json'})except Exception as exc:return ActionReturn(errmsg=f'MagicMaker exception: {exc}',state=ActionStatusCode.HTTP_ERROR)image_url = response.json()['data']['imgUrl']return {'image': image_url}

最后,我们修改 /root/agent_camp3/lagent/examples/internlm2_agent_web_demo.py 来适配我们的自定义工具。

在 from lagent.actions import ActionExecutor, ArxivSearch, IPythonInterpreter 的下一行添加 from lagent.actions.magicmaker import MagicMaker
在第27行添加 MagicMaker()。
from lagent.actions import ActionExecutor, ArxivSearch, IPythonInterpreter

  • from lagent.actions.magicmaker import MagicMaker
    from lagent.agents.internlm2_agent import INTERPRETER_CN, META_CN, PLUGIN_CN, Internlm2Agent, Internlm2Protocol


action_list = [
ArxivSearch(),

  •         MagicMaker(),]
    

接下来,启动 Web Demo 来体验一下吧!我们同时启用两个工具,然后输入“请帮我生成一幅山水画”

在这里插入图片描述

修改后可得

在这里插入图片描述

建议:出现很多关于版本匹配的问题,对新手学习极不友好,建议将对应所需的版本号也都标注。

这篇关于【书生大模型实战营】进阶岛 第2关 Lagent 自定义你的 Agent 智能体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127251

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Rust 智能指针的使用详解

《Rust智能指针的使用详解》Rust智能指针是内存管理核心工具,本文就来详细的介绍一下Rust智能指针(Box、Rc、RefCell、Arc、Mutex、RwLock、Weak)的原理与使用场景,... 目录一、www.chinasem.cnRust 智能指针详解1、Box<T>:堆内存分配2、Rc<T>:

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Oracle Scheduler任务故障诊断方法实战指南

《OracleScheduler任务故障诊断方法实战指南》Oracle数据库作为企业级应用中最常用的关系型数据库管理系统之一,偶尔会遇到各种故障和问题,:本文主要介绍OracleSchedul... 目录前言一、故障场景:当定时任务突然“消失”二、基础环境诊断:搭建“全局视角”1. 数据库实例与PDB状态2

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结