掌握数据利器:AWS Glue与数据基盘概览

2024-09-01 12:28

本文主要是介绍掌握数据利器:AWS Glue与数据基盘概览,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

随着数字化进程的不断推进,企业现在能够积累并分析海量且多样化的数据。这一优势使得许多企业开始采用数据驱动型经营(即基于数据的经营策略)。通过基于数据的客观判断,企业及其管理者可以获得诸多好处。

然而,要充分利用所积累的数据,就需要建立一个坚实的数据基础设施。然而,这并不是一次性完成的任务。随着企业日常运营中数据量和种类的不断增加,需要持续优化性能、调整设计,并引入适合的工具和解决方案。

在本文中,我们将通过一系列文章介绍AWS Glue——一个在AWS上构建数据基础设施时至关重要的服务。希望这些内容能为您在Glue的应用过程中提供一些启发。

数据基础设施是什么?

数据基础设施指的是企业或组织用来收集、管理和分析数据的一系列系统。

数据基础设施通常承担以下四个主要功能:

  • 数据的收集
  • 数据的存储
  • 数据的加工
  • 数据的分析

通常情况下,数据基础设施由以下三层结构组成:

  • 数据湖
  • 数据仓库
  • 数据集市

虽然并没有硬性规定必须采用三层结构设计,但这一结构是数据基础设施中最基本的形式,因此非常值得掌握。

数据基础设施的四大功能

数据的收集
为了有效利用数据,首先需要收集各类数据。由于企业通常采用多个系统,数据往往分散在不同的地方进行管理。因此,必须将这些系统或数据库中孤立的数据集中起来。

注: “孤立数据”是指那些为单一目的保存且未与其他系统联通的数据,这些数据处于分割状态。

数据的存储
收集到的数据需要存储在数据基础设施中。通过利用数据湖,可以对结构化数据、半结构化数据和非结构化数据等各种数据进行集中管理,实现统一存储。

数据的加工
为了实现高效的数据分析,需要将数据加工成易于分析的状态。恰当地处理数据对分析的性能和精度有重要影响,因此这一环节至关重要。

数据的分析
最后,对数据进行分析。为了使处理后的数据更便于作为决策依据,通常需要对数据进行可视化分析。近年来,有许多便捷的可视化和分析工具以及BI工具可供选择,选择适合的工具也是关键的一步。此外,越来越多的企业开始将人工智能引入到数据分析过程中。

数据基础设施的三层结构

数据湖
数据湖是用于存储海量数据的场所,这些数据以原始形式存储,包括结构化数据、半结构化数据和非结构化数据等各种类型。数据湖的优势在于能够以其原始形式存储各种数据,从而拓展了数据的使用范围。数据湖中的数据并不像数据仓库或数据集市那样具备特定的目的,而是为了未来可能的需求进行储备。

数据仓库
数据仓库是用于存储经过处理后的数据的场所,这些数据源自数据湖中的原始数据。为了便于分析,数据仓库中的数据通常会经过结构化、格式转换、重复数据删除和字符编码转换等清理处理。这些操作使得数据仓库能够存储一致性强且便于跨领域分析的数据。这些处理通常通过ETL(提取、转换、加载)流程来实现,后面将对ETL进行详细解释。

数据集市
数据集市是根据具体的业务部门、用途或目的,从数据仓库中提取出所需数据,并将其加工为便于使用的形式后进行存储的场所。与全面覆盖信息的数据库仓库不同,数据集市根据不同的用途和需求对数据进行分类存储。这种方法有助于快速获取数据并优化分析过程。

ETL处理

ETL处理是指将数据提取(Extract)、转换(Transform)为适合数据仓库(DWH)使用的格式并进行加工处理,最后加载(Load)到数据仓库的一系列过程。ETL的名称即来源于这三个步骤的首字母缩写。

AWS Glue概述

AWS Glue是一种在AWS上提供的无服务器、可扩展的数据集成服务。通过使用Glue,用户可以从AWS内外的多个数据源中进行数据的发现、准备、移动和整合,从而大大简化了数据分析、机器学习以及其他基于数据的应用程序的开发。

AWS Glue所提供的功能非常广泛,因此很难用一句话来概括Glue的服务性质。

下图展示了AWS Glue环境的架构。

图片出自AWS Glue concepts - AWS Glue 

 

AWS Glue的主要功能包括以下几点:

  • Glue作业(Glue Job)
    Glue作业是AWS Glue中的核心功能之一,用于定义和执行数据的提取、转换和加载(ETL)流程。通过Glue作业,用户可以创建和管理一系列自动化的数据处理任务。

  • Glue数据目录(Glue Data Catalog)
    Glue数据目录是一个持久的元数据存储库,用于存储与数据存储位置和架构相关的元数据。它使得不同的数据源之间能够轻松共享和访问数据,并且可以作为多个AWS服务(如Amazon Athena、Amazon Redshift等)的共享数据元数据存储。

Glue作业

Glue作业是一个允许用户使用Python编写程序,以无服务器方式实现ETL处理的功能。尽管它与AWS Lambda有类似之处,但Glue作业在Apache Spark环境中运行,专门针对ETL处理提供内置功能和适合数据处理的资源。Glue作业还可以基于时间表或特定事件触发执行,灵活性极高。

Glue数据目录

Glue数据目录是一个用于存储数据元数据的集中式存储库。通过Glue数据目录,用户可以管理存储在S3上的结构化数据(如CSV和Parquet文件)的架构信息和文件位置等元数据。它还包含定义ETL作业所需的其他元数据,并可以保存数据的更改历史记录。虽然用户可以手动定义架构,但也可以利用Glue的爬虫(Crawler)功能自动从数据文件中检测并生成架构信息。

总结

本文概述了数据基础设施的基本概念和AWS Glue的关键功能。我们详细介绍了Glue作业的无服务器ETL处理能力,以及Glue数据目录在管理和存储数据元数据中的重要作用。通过理解这些核心功能,企业可以更高效地构建和优化其数据基础设施,为数据分析、机器学习等应用打下坚实基础。

这篇关于掌握数据利器:AWS Glue与数据基盘概览的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126933

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很