NASA数据集:50 m分辨率的雪水当量(SWE)地图的集合

2024-09-01 09:20

本文主要是介绍NASA数据集:50 m分辨率的雪水当量(SWE)地图的集合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ASO L4 Lidar Snow Water Equivalent 50m UTM Grid V001

ASO L4 激光雷达雪水当量 50 米UTM 网格,第 1 版

简介

该数据集包含 50 米网格雪水当量 (SWE) 值,是 NASA/JPL 机载雪地观测站 (ASO) 飞机勘测活动的一部分。 这些数据来自 ASO L4 Lidar Snow Depth 50m UTM Grid 数据产品和模型雪密度。

参数:SNOW WATER EQUIVALENT 平台:DHC-6,King Air 传感器:Riegl LMS-Q1560 数据格式:GeoTIFF,PNG 时间覆盖范围:2013 年 4 月 3 日至 2019 年 7 月 16 日 时间分辨率:
空间分辨率: 50 m 50 m 空间参考系: WGS 84 / UTM zone 10NEPSG:32610 WGS 84 / UTM zone 11NEPSG:32611 WGS 84 / UTM zone 12NEPSG:32612 WGS 84 / UTM zone 13NEPSG:32613

摘要

该数据集是50 m分辨率的雪水当量(SWE)地图的集合,测量方法为 机载雪天文台(AsO),一个耦合成像光谱仪和扫描激光雷达系统 由NASA/JPL创建。成像光谱仪用于量化光谱脉冲、宽带 雷诺数,以及雪中灰尘和黑碳的辐射强迫。扫描激光雷达测量雪 使用差测高法减去无雪网格海拔数据的深度 积雪覆盖的网格化海拔数据(Deems等人,2013年)。原来3 m的雪深 ASO L4激光雷达雪深3 m UTM网格数据集中提供的测量结果如下 用于汇总ASO L4 Lidar SnowDepth 50 m UTM中的50 m网格化雪深度数据 网格数据集。为了推断此处提供的SWE数据,合并了50 m雪深数据 雪密度由iSnobal建模,这是一种基于网格分布的、基于物理的能量平衡 模型

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="SO_50M_SWE",cloud_hosted=True,bounding_box=(-118.4259857, 37.37399023, -118.4109694, 37.39260287),temporal=("2013-04-03", "2019-07-16"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Painter, T. (2018). ASO L4 Lidar Snow Water Equivalent 50m UTM Grid, Version 1 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/M4TUH28NHL4Z. Date Accessed 08-25-2024.

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集:50 m分辨率的雪水当量(SWE)地图的集合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126536

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro