Python OpenCV -- Canny 边缘检测 (十一)

2024-09-01 05:38

本文主要是介绍Python OpenCV -- Canny 边缘检测 (十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Canny 边缘检测

原理

  Canny 边缘检测算法 是 John F. Canny 于 1986年开发出来的一个多级边缘检测算法,也被很多人认为是边缘检测的 最优算法, 最优边缘检测的三个主要评价标准是:

  低错误率: 标识出尽可能多的实际边缘,同时尽可能的减少噪声产生的误报。
  高定位性: 标识出的边缘要与图像中的实际边缘尽可能接近。
  最小响应: 图像中的边缘只能标识一次。


步骤

 1. 消除噪声。 使用高斯平滑滤波器卷积降噪。 下面显示了一个 size = 5 的高斯内核示例:

                                                K = \dfrac{1}{159}\begin{bmatrix}          2 & 4 & 5 & 4 & 2 \\          4 & 9 & 12 & 9 & 4 \\          5 & 12 & 15 & 12 & 5 \\          4 & 9 & 12 & 9 & 4 \\          2 & 4 & 5 & 4 & 2                  \end{bmatrix}

 2.计算梯度幅值和方向。 此处,按照Sobel滤波器的步骤:

   a. 运用一对卷积阵列 (分别作用于 x 和 y 方向):

                                                            G_{x} = \begin{bmatrix}-1 & 0 & +1  \\-2 & 0 & +2  \\-1 & 0 & +1\end{bmatrix}G_{y} = \begin{bmatrix}-1 & -2 & -1  \\0 & 0 & 0  \\+1 & +2 & +1\end{bmatrix}

   b.使用下列公式计算梯度幅值和方向:

                                                              \begin{array}{l}G = \sqrt{ G_{x}^{2} + G_{y}^{2} } \\\theta = \arctan(\dfrac{ G_{y} }{ G_{x} })\end{array}

        梯度方向近似到四个可能角度之一(一般 0, 45, 90, 135)

 

  3. 非极大值 抑制。 这一步排除非边缘像素, 仅仅保留了一些细线条(候选边缘)。

  4.滞后阈值: 最后一步,Canny 使用了滞后阈值,滞后阈值需要两个阈值(高阈值和低阈值):

     a. 如果某一像素位置的幅值超过 高 阈值, 该像素被保留为边缘像素。
     b. 如果某一像素位置的幅值小于 低 阈值, 该像素被排除。
     c. 如果某一像素位置的幅值在两个阈值之间,该像素仅仅在连接到一个高于 高 阈值的像素时被保留。
     

    Canny 推荐的 高:低 阈值比在 2:1 到3:1之间。


使用

OpenCV Python  中 Canny 函数原型

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 

edge  --  函数返回 一副二值图(黑白),其中包含检测出来的边缘

image --   需要处理的原图像,该图像必须为单通道的灰度图
threshold1  --  阈值1

threshold2  --  阈值2


  threshold2  是较大的阈值,用于检测图像中明显的边缘,但一般情况下检测的效果不会那么完美,边缘检测出来是断断续续的。所以这时候用较小的 threshold1  

(第一个阈值)用于将这些间断的边缘连接起来。


apertureSize  --  Sobel 算子的大小。

L2gradient   --  一个布尔值,如果为 True ,刚使用更精确的 L2 范数进行计算(即两个方向的倒数的平方和再开放), False 将使用L1 范数(直接将两个方向导数

的绝对值相加)。


示例1(静态检测)

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np img = cv2.imread("2.jpg", 0)  #Canny只能处理灰度图,所以将读取的图像转成灰度图img = cv2.GaussianBlur(img,(3,3),0) #高斯平滑处理原图像降噪 
canny = cv2.Canny(img, 50, 150)     #apertureSize默认为3cv2.imshow('Canny', canny)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  

效果图:



示例2(动态检测)

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np def CannyThreshold(lowThreshold):  detected_edges = cv2.GaussianBlur(gray,(3,3),0)  detected_edges = cv2.Canny(detected_edges,lowThreshold,lowThreshold*ratio,apertureSize = kernel_size)  dst = cv2.bitwise_and(img,img,mask = detected_edges)  # just add some colours to edges from original image.  cv2.imshow('canny demo',dst)  lowThreshold = 0  
max_lowThreshold = 100  
ratio = 3  
kernel_size = 3  img = cv2.imread('2.jpg')  
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  cv2.namedWindow('canny demo')  cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold)  CannyThreshold(0)  # initialization  
if cv2.waitKey(0) == 27:  cv2.destroyAllWindows()  







参考和转载:

 程序使用的是 sunny2038 的,最后那个链接就是他的博客

http://wiki.opencv.org.cn/index.php/Canny%E8%BE%B9%E7%BC%98%E6%A3%80%E6%B5%8B

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html

http://blog.csdn.net/sunny2038/article/details/9202641

这篇关于Python OpenCV -- Canny 边缘检测 (十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1126091

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合