Python OpenCV -- Canny 边缘检测 (十一)

2024-09-01 05:38

本文主要是介绍Python OpenCV -- Canny 边缘检测 (十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Canny 边缘检测

原理

  Canny 边缘检测算法 是 John F. Canny 于 1986年开发出来的一个多级边缘检测算法,也被很多人认为是边缘检测的 最优算法, 最优边缘检测的三个主要评价标准是:

  低错误率: 标识出尽可能多的实际边缘,同时尽可能的减少噪声产生的误报。
  高定位性: 标识出的边缘要与图像中的实际边缘尽可能接近。
  最小响应: 图像中的边缘只能标识一次。


步骤

 1. 消除噪声。 使用高斯平滑滤波器卷积降噪。 下面显示了一个 size = 5 的高斯内核示例:

                                                K = \dfrac{1}{159}\begin{bmatrix}          2 & 4 & 5 & 4 & 2 \\          4 & 9 & 12 & 9 & 4 \\          5 & 12 & 15 & 12 & 5 \\          4 & 9 & 12 & 9 & 4 \\          2 & 4 & 5 & 4 & 2                  \end{bmatrix}

 2.计算梯度幅值和方向。 此处,按照Sobel滤波器的步骤:

   a. 运用一对卷积阵列 (分别作用于 x 和 y 方向):

                                                            G_{x} = \begin{bmatrix}-1 & 0 & +1  \\-2 & 0 & +2  \\-1 & 0 & +1\end{bmatrix}G_{y} = \begin{bmatrix}-1 & -2 & -1  \\0 & 0 & 0  \\+1 & +2 & +1\end{bmatrix}

   b.使用下列公式计算梯度幅值和方向:

                                                              \begin{array}{l}G = \sqrt{ G_{x}^{2} + G_{y}^{2} } \\\theta = \arctan(\dfrac{ G_{y} }{ G_{x} })\end{array}

        梯度方向近似到四个可能角度之一(一般 0, 45, 90, 135)

 

  3. 非极大值 抑制。 这一步排除非边缘像素, 仅仅保留了一些细线条(候选边缘)。

  4.滞后阈值: 最后一步,Canny 使用了滞后阈值,滞后阈值需要两个阈值(高阈值和低阈值):

     a. 如果某一像素位置的幅值超过 高 阈值, 该像素被保留为边缘像素。
     b. 如果某一像素位置的幅值小于 低 阈值, 该像素被排除。
     c. 如果某一像素位置的幅值在两个阈值之间,该像素仅仅在连接到一个高于 高 阈值的像素时被保留。
     

    Canny 推荐的 高:低 阈值比在 2:1 到3:1之间。


使用

OpenCV Python  中 Canny 函数原型

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 

edge  --  函数返回 一副二值图(黑白),其中包含检测出来的边缘

image --   需要处理的原图像,该图像必须为单通道的灰度图
threshold1  --  阈值1

threshold2  --  阈值2


  threshold2  是较大的阈值,用于检测图像中明显的边缘,但一般情况下检测的效果不会那么完美,边缘检测出来是断断续续的。所以这时候用较小的 threshold1  

(第一个阈值)用于将这些间断的边缘连接起来。


apertureSize  --  Sobel 算子的大小。

L2gradient   --  一个布尔值,如果为 True ,刚使用更精确的 L2 范数进行计算(即两个方向的倒数的平方和再开放), False 将使用L1 范数(直接将两个方向导数

的绝对值相加)。


示例1(静态检测)

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np img = cv2.imread("2.jpg", 0)  #Canny只能处理灰度图,所以将读取的图像转成灰度图img = cv2.GaussianBlur(img,(3,3),0) #高斯平滑处理原图像降噪 
canny = cv2.Canny(img, 50, 150)     #apertureSize默认为3cv2.imshow('Canny', canny)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  

效果图:



示例2(动态检测)

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np def CannyThreshold(lowThreshold):  detected_edges = cv2.GaussianBlur(gray,(3,3),0)  detected_edges = cv2.Canny(detected_edges,lowThreshold,lowThreshold*ratio,apertureSize = kernel_size)  dst = cv2.bitwise_and(img,img,mask = detected_edges)  # just add some colours to edges from original image.  cv2.imshow('canny demo',dst)  lowThreshold = 0  
max_lowThreshold = 100  
ratio = 3  
kernel_size = 3  img = cv2.imread('2.jpg')  
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  cv2.namedWindow('canny demo')  cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold)  CannyThreshold(0)  # initialization  
if cv2.waitKey(0) == 27:  cv2.destroyAllWindows()  







参考和转载:

 程序使用的是 sunny2038 的,最后那个链接就是他的博客

http://wiki.opencv.org.cn/index.php/Canny%E8%BE%B9%E7%BC%98%E6%A3%80%E6%B5%8B

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html

http://blog.csdn.net/sunny2038/article/details/9202641

这篇关于Python OpenCV -- Canny 边缘检测 (十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126091

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数