yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化)

本文主要是介绍yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上个博客:

https://blog.csdn.net/weixin_43269994/article/details/141753412

优化如下函数:

def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):base_filename, image_ext = os.path.splitext(image_filename)# 构建原始文件路径file_paths = {"images": os.path.join(base_folder, "images", image_filename),}if process_annotations:file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")if process_labels:file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")# 创建输出文件夹output_folders = create_output_folders(base_folder)# 复制原始图像copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)if process_annotations:copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)if process_labels:copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)# 生成按梯度变化的增益值vgain_start, vgain_end = vgain_rangevgain_step = (vgain_end - vgain_start) / num_augmentationsfor i in range(1, num_augmentations + 1):vgain = vgain_start + i * vgain_stepbrightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)filename_suffix = f"_enhanced_{i}"output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)cv2.imwrite(output_image_path, brightened_img)print(f"Saved: {output_image_path}")if process_annotations:copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)print(f"Copied annotations: {output_image_path}")if process_labels:copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)print(f"Copied labels: {output_image_path}")print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")

这个函数 augment_and_copy_files 的目的是处理和增强图像,并将处理后的图像及其相关的注释和标签文件复制到指定的输出文件夹中。具体来说,它对图像进行亮度调整,并生成多个增强版本,同时可选择处理和复制对应的注释和标签文件。以下是详细解释:

  • base_folder: 原始数据的基路径。它包含了 images、annotations 和 labels 文件夹。
  • image_filename: 要处理的图像文件名。
  • num_augmentations: 生成的增强图像数量。
  • vgain_range: 亮度增益的范围,包含两个值,起始增益和结束增益。
  • process_labels: 布尔值,指示是否处理标签文件。
  • process_annotations: 布尔值,指示是否处理注释文件。

总体代码:

import cv2
import numpy as np
import os
import shutildef adjust_brightness(im, vgain):hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)hue, sat, val = cv2.split(hsv)val = np.clip(val * vgain, 0, 255).astype(np.uint8)enhanced_hsv = cv2.merge((hue, sat, val))brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)return brightened_imgdef create_output_folders(base_folder):new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")output_folders = {"images": os.path.join(new_base_folder, "images"),"annotations": os.path.join(new_base_folder, "annotations"),"labels": os.path.join(new_base_folder, "labels")}for folder in output_folders.values():os.makedirs(folder, exist_ok=True)return output_foldersdef copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):base_filename, ext = os.path.splitext(os.path.basename(src_path))if preserve_ext:new_filename = f"{base_filename}{filename_suffix}{ext}"else:new_filename = f"{base_filename}{filename_suffix}"dst_path = os.path.join(dst_folder, new_filename)shutil.copy(src_path, dst_path)return dst_pathdef augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):base_filename, image_ext = os.path.splitext(image_filename)# 构建原始文件路径file_paths = {"images": os.path.join(base_folder, "images", image_filename),}if process_annotations:file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")if process_labels:file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")# 创建输出文件夹output_folders = create_output_folders(base_folder)# 复制原始图像copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)if process_annotations:copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)if process_labels:copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)# 生成按梯度变化的增益值vgain_start, vgain_end = vgain_rangevgain_step = (vgain_end - vgain_start) / num_augmentationsfor i in range(1, num_augmentations + 1):vgain = vgain_start + i * vgain_stepbrightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)filename_suffix = f"_enhanced_{i}"output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)cv2.imwrite(output_image_path, brightened_img)print(f"Saved: {output_image_path}")if process_annotations:copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)print(f"Copied annotations: {output_image_path}")if process_labels:copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)print(f"Copied labels: {output_image_path}")print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):images_folder = os.path.join(base_folder, "images")for image_filename in os.listdir(images_folder):if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range, process_labels, process_annotations)# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_16_38\train"
process_all_images_in_folder(base_folder, num_augmentations=10, vgain_range=(1, 3), process_labels=True, process_annotations=False)

这篇关于yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124793

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4