yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化)

本文主要是介绍yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上个博客:

https://blog.csdn.net/weixin_43269994/article/details/141753412

优化如下函数:

def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):base_filename, image_ext = os.path.splitext(image_filename)# 构建原始文件路径file_paths = {"images": os.path.join(base_folder, "images", image_filename),}if process_annotations:file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")if process_labels:file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")# 创建输出文件夹output_folders = create_output_folders(base_folder)# 复制原始图像copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)if process_annotations:copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)if process_labels:copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)# 生成按梯度变化的增益值vgain_start, vgain_end = vgain_rangevgain_step = (vgain_end - vgain_start) / num_augmentationsfor i in range(1, num_augmentations + 1):vgain = vgain_start + i * vgain_stepbrightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)filename_suffix = f"_enhanced_{i}"output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)cv2.imwrite(output_image_path, brightened_img)print(f"Saved: {output_image_path}")if process_annotations:copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)print(f"Copied annotations: {output_image_path}")if process_labels:copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)print(f"Copied labels: {output_image_path}")print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")

这个函数 augment_and_copy_files 的目的是处理和增强图像,并将处理后的图像及其相关的注释和标签文件复制到指定的输出文件夹中。具体来说,它对图像进行亮度调整,并生成多个增强版本,同时可选择处理和复制对应的注释和标签文件。以下是详细解释:

  • base_folder: 原始数据的基路径。它包含了 images、annotations 和 labels 文件夹。
  • image_filename: 要处理的图像文件名。
  • num_augmentations: 生成的增强图像数量。
  • vgain_range: 亮度增益的范围,包含两个值,起始增益和结束增益。
  • process_labels: 布尔值,指示是否处理标签文件。
  • process_annotations: 布尔值,指示是否处理注释文件。

总体代码:

import cv2
import numpy as np
import os
import shutildef adjust_brightness(im, vgain):hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)hue, sat, val = cv2.split(hsv)val = np.clip(val * vgain, 0, 255).astype(np.uint8)enhanced_hsv = cv2.merge((hue, sat, val))brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)return brightened_imgdef create_output_folders(base_folder):new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")output_folders = {"images": os.path.join(new_base_folder, "images"),"annotations": os.path.join(new_base_folder, "annotations"),"labels": os.path.join(new_base_folder, "labels")}for folder in output_folders.values():os.makedirs(folder, exist_ok=True)return output_foldersdef copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):base_filename, ext = os.path.splitext(os.path.basename(src_path))if preserve_ext:new_filename = f"{base_filename}{filename_suffix}{ext}"else:new_filename = f"{base_filename}{filename_suffix}"dst_path = os.path.join(dst_folder, new_filename)shutil.copy(src_path, dst_path)return dst_pathdef augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):base_filename, image_ext = os.path.splitext(image_filename)# 构建原始文件路径file_paths = {"images": os.path.join(base_folder, "images", image_filename),}if process_annotations:file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")if process_labels:file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")# 创建输出文件夹output_folders = create_output_folders(base_folder)# 复制原始图像copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)if process_annotations:copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)if process_labels:copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)# 生成按梯度变化的增益值vgain_start, vgain_end = vgain_rangevgain_step = (vgain_end - vgain_start) / num_augmentationsfor i in range(1, num_augmentations + 1):vgain = vgain_start + i * vgain_stepbrightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)filename_suffix = f"_enhanced_{i}"output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)cv2.imwrite(output_image_path, brightened_img)print(f"Saved: {output_image_path}")if process_annotations:copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)print(f"Copied annotations: {output_image_path}")if process_labels:copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)print(f"Copied labels: {output_image_path}")print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):images_folder = os.path.join(base_folder, "images")for image_filename in os.listdir(images_folder):if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range, process_labels, process_annotations)# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_16_38\train"
process_all_images_in_folder(base_folder, num_augmentations=10, vgain_range=(1, 3), process_labels=True, process_annotations=False)

这篇关于yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124793

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar