基于ASO-BP原子探索优化BP神经网络实现数据预测Python实现

2024-08-31 18:52

本文主要是介绍基于ASO-BP原子探索优化BP神经网络实现数据预测Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文提出了一种基于ASO算法优化BP神经网络的数据预测方法。通过ASO算法对BP神经网络的权值和阈值进行优化,克服了BP神经网络易陷入局部最优解和对初始权值敏感的缺点。实验结果表明,优化后的BP神经网络在预测精度上得到了显著提升,为数据预测领域提供了一种新的有效方法。

一、ASO-BP算法概述

1.ASO原子探索算法

原子搜索算法(ASO)是一种受微观分子动力学启发的智能优化算法,于2019年提出。在ASO中,每个原子在搜索空间中的位置代表一个与原子质量相对应的解,较好的解表示较重的质量。种群中的所有原子会根据彼此之间的距离相互吸引或排斥,且较轻的原子会向较重的原子移动。通过计算Lennard-Jones势能,并利用加速度与速度随距离的关系来更新原子的位置,ASO算法能够有效地求解优化问题。

2.BP神经网络(BP)

BP神经网络是一种具有三层或三层以上的多层神经网络,包括输入层、隐含层和输出层。每一层都由若干个神经元组成,神经元之间通过加权和的方式传递信号,并经过激活函数进行非线性变换。BP神经网络的训练过程包括前向传播和反向传播两个阶段。在前向传播阶段,输入信号从输入层逐层传递到输出层;在反向传播阶段,根据输出误差调整各层之间的连接权重,使误差逐步减小。

3.ASO-BP神经网络回归预测方法

ASO-BP神经网络回归预测方法的基本思路如下:

(1)初始化:初始化BP神经网络的权重和偏置。初始化原子的位置(即神经网络的参数)。

(2)适应度函数:使用BP神经网络在训练集上进行训练,并计算验证集上的误差(如均方误差MSE)作为适应度值。

(3)速度和位置更新:根据原子之间的距离计算势能。根据势能和物理规律更新原子的速度和加速度。根据速度和加速度更新原子的位置,即更新BP神经网络的权值和阈值。

(4)迭代:重复上述步骤,直到达到最大迭代次数或满足其他停止条件。

(5)结果输出:使用最优原子的权重和阈值(即最优参数集)的BP神经网络进行预测。

二、实验步骤

ASO-BP神经网络回归预测步骤:

1.数据清洗:去除缺失值和异常值。

2.特征选择:根据相关性分析选择对预测结果影响显著的特征。

3.数据归一化:将特征值缩放到同一量纲,提高训练效率。

4.定义BP神经网络结构:确定输入层、隐藏层(数量、神经元数)、输出层的结构。

5.初始化:设置ASO参数,包括初始种群规模、最大进化代数、自变量个数(即BP神经网络的权值和阈值总数)、自变量上下限等。

6.评估适应度:使用训练集数据训练BP神经网络,并计算训练集和测试集的均方误差作为适应度值。适应度值越小,表示解的质量越好。

7.更新原子位置:根据原子之间的距离计算势能。根据势能和物理规律更新原子的速度和加速度。根据速度和加速度更新原子的位置,即更新BP神经网络的权值和阈值。

8.迭代优化重复步骤6和7,直到达到最大进化代数或满足其他停止条件。

9.模型评估:在训练完成后,评估模型在训练集和测试集上的性能,使用不同的指标(如R²、MAE、MBE、RMSE、MAPE)。

10.结果可视化:绘制训练集和测试集的预测值与真实值的对比图。

 

代码部分

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import torch.optim as optim
import matplotlib
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False# 导入数据
data = pd.read_csv('数据集.csv').values# 划分训练集和测试集
np.random.seed(0)
temp = np.random.permutation(len(data))P_train = data[temp[:80], :7]
T_train = data[temp[:80], 7]
P_test = data[temp[80:], :7]
T_test = data[temp[80:], 7]# 数据归一化
scaler_input = MinMaxScaler(feature_range=(0, 1))
scaler_output = MinMaxScaler(feature_range=(0, 1))p_train = scaler_input.fit_transform(P_train)
p_test = scaler_input.transform(P_test)t_train = scaler_output.fit_transform(T_train.reshape(-1, 1)).ravel()
t_test = scaler_output.transform(T_test.reshape(-1, 1)).ravel()
# 转换为 PyTorch 张量
p_train = torch.tensor(p_train, dtype=torch.float32).to(device)
t_train = torch.tensor(t_train, dtype=torch.float32).view(-1, 1).to(device)
p_test = torch.tensor(p_test, dtype=torch.float32).to(device)
t_test = torch.tensor(t_test, dtype=torch.float32).view(-1, 1).to(device)# 初始化网络
class BPNetwork(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(BPNetwork, self).__init__()self.hidden = nn.Linear(input_size, hidden_size)self.relu = nn.ReLU()self.output = nn.Linear(hidden_size, output_size)def forward(self, x):x = self.relu(self.hidden(x))x = self.output(x)return xinput_size = p_train.shape[1]
hidden_size = 11
output_size = t_train.shape[1]bp_net = BPNetwork(input_size, hidden_size, output_size).to(device)# 损失函数
criterion = nn.MSELoss()# 定义适应度函数(误差函数)
def fitness_function(network, data, target):network.eval()with torch.no_grad():output = network(data)loss_fn = nn.MSELoss()loss = loss_fn(output, target)return loss.item()

四、实验与结果

1.数据准备

为了验证ASO优化BP神经网络的有效性,本文采用某数据集进行实验。下面所示本次采用的数据集(部分)。

 

2.结果分析

实验结果表明,经过ASO优化后的BP神经网络在预测精度上显著优于未经优化的BP神经网络。具体地,优化后的BP神经网络在测试集上的均方误差降低了约20%,表明ASO算法能够有效地提升BP神经网络的预测性能。

(1) 训练集预测值和真实值对比结果 

 

(2) 测试集预测值和真实值对比结果  

 

(3) 训练集线性回归图 

 

(4) 测试集线性回归图 

 

(5) 其他性能计算 

 

五、结论

本文提出了一种基于ASO算法优化BP神经网络的数据预测方法。通过ASO算法对BP神经网络的权值和阈值进行优化,克服了BP神经网络易陷入局部最优解和对初始权值敏感的缺点。实验结果表明,优化后的BP神经网络在预测精度上得到了显著提升,为数据预测领域提供了一种新的有效方法。

这篇关于基于ASO-BP原子探索优化BP神经网络实现数据预测Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124724

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法