5.3二叉树——二叉树链式结构实现

2024-08-31 17:04

本文主要是介绍5.3二叉树——二叉树链式结构实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇博客梳理二叉树链式结构
明确:二叉树是递归定义
递归的本质:当前问题+子问题,返回条件是最小规模的子问题

一、二叉树的遍历

1.前序、中序与后序遍历

(1)前序:根->左子树->右子树(每个子树也满足这个遍历顺序,下同)
(2)中序:左子树->根->右子树
(3)后序:左子树->右子树->根
分析前序遍历
前序遍历过程
递归展开图如下,红色箭头表示递推,绿色箭头表示回归
前序遍历递归展开图

// 二叉树前序遍历:根-左子树-右子树
void BinaryTreePrevOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}printf("%d ", root->data);BinaryTreePrevOrder(root->leftChild);BinaryTreePrevOrder(root->rightChild);
}

前序遍历结果:
前序遍历结果
1的左右子树是两个红框,红框内的树仍旧满足前序遍历

// 二叉树中序遍历:左子树-根-右子树
void BinaryTreeInOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}BinaryTreeInOrder(root->leftChild);printf("%d ", root->data);BinaryTreeInOrder(root->rightChild);
}

中序遍历结果:
中序遍历结果

// 二叉树后序遍历:左子树-右子树-根
void BinaryTreePostOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}BinaryTreePostOrder(root->leftChild);BinaryTreePostOrder(root->rightChild);printf("%d ", root->data);
}

后序遍历结果:
后序遍历结果

2.层序遍历(广度优先遍历【BFS】)

逐层访问二叉树的结点
层序遍历
① 算法思想:用队列辅助,上一层带下一层
② 具体操作:队列结点的data存指向二叉树结点的指针,一个结点出列,该节点孩子马上入列(空结点不入列)
③ 画图分析:
层序遍历画图分析
代码实现如下,队列相关的函数可在4.1中找到

// 层序遍历
//用队列辅助,每个节点当中存指向二叉树对应结点的指针
void BinaryTreeLevelOrder(BTNode* root)
{Queue queue;QueueInit(&queue);//注意:队列中链表节点的data要改成BTNode*的指针//根节点先入列QueuePush(&queue, root);while (!QueueEmpty(&queue)){//一个结点出列,带着其孩子入列,空结点不入列BTNode* front = QueueFront(&queue);if (front->leftChild != NULL)//左孩子不为空则入列{QueuePush(&queue, front->leftChild);}if (front->rightChild != NULL)//右孩子不为空则入列{QueuePush(&queue, front->rightChild);}printf("%d ", QueueFront(&queue)->data);QueuePop(&queue);//结点出列}QueueDestroy(&queue);
}

二、结点个数与高度等

二叉树链式结构

typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* leftChild;struct BinaryTreeNode* rightChild;
}BTNode;

1.二叉树结点个数:int BinaryTreeSize(BTNode* root);

节点个数返回值如下:

  • 空:return 0
  • 不为空:return 左子树结点数+右子树结点数+1
// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{if (root == NULL)return 0;if (root->leftChild == NULL && root->rightChild == NULL)return 1;elsereturn BinaryTreeSize(root->leftChild) +BinaryTreeSize(root->rightChild) + 1;
}

2.二叉树叶子结点个数:int BinaryTreeLeafSize(BTNode* root);

叶子结点个数返回值如下

  • 空:return 0
  • 叶子:return 1
  • 非叶子:return 左子树叶子数+右子树叶子数
//二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL)return 0;if (root->leftChild == NULL && root->rightChild == NULL)return 1;return BinaryTreeLeafSize(root->leftChild)+ BinaryTreeLeafSize(root->rightChild);
}

3.二叉树第k层结点个数int BinaryTreeLevelKSize(BTNode* root, int k);

  • 空:return 0
  • 非空且k==1:return 1
  • 非空且k>1:研究左子树第k-1层+右子树第k-1层
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL)return 0;if (root && k == 1)return 1;return BinaryTreeLevelKSize(root->leftChild, k - 1) +BinaryTreeLevelKSize(root->rightChild, k - 1);
}

4.判断二叉树是否为完全二叉树:int BinaryTreeComplete(BTNode* root);

① 算法思想:层序遍历
② 具体操作:层序遍历,把空也带入队列,第一个空出列之后就开始检查,如果队列中还有非空元素,就不是完全二叉树

//判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{if (root == NULL)return 0;//用层序遍历,把所有数据(包括NULL)也带入队列//当第一个空出列之后,开始判断,如果队列中还有非空就不是完全二叉树Queue queue;QueueInit(&queue);QueuePush(&queue, root);//根先入队列while (!QueueEmpty(&queue)){BTNode* front = QueueFront(&queue);if (front != NULL){QueuePop(&queue);QueuePush(&queue, front->leftChild);QueuePush(&queue, front->rightChild);}//遇到第一个NULL在队头就开始检查if (front == NULL){break;}}//注意:NULL指针在队列当中,队列不是空while (!QueueEmpty(&queue)){BTNode* front = QueueFront(&queue);if (front == NULL){QueuePop(&queue);}if (front != NULL)//发现队列当中还有不为NULL的元素,就不是完全二叉树return 0;}return 1;
}

这篇关于5.3二叉树——二叉树链式结构实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124478

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资