sam2 安装使用笔记

2024-08-31 14:12
文章标签 安装 使用 笔记 sam2

本文主要是介绍sam2 安装使用笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

sam2 windows 安装

安装

cannot import name ‘_C‘ from ‘sam2‘解决

box测试;

sam2图片分割


sam2 windows 安装

SAM2 安装与运行问题解决方案_sam2部署-CSDN博客

安装

cannot import name ‘_C‘ from ‘sam2‘解决

http://t.csdnimg.cn/CEbKa

box测试;

ann_frame_idx = 0  # the frame index we interact with
ann_obj_id = 4  # give a unique id to each object we interact with (it can be any integers)# Let's add a box at (x_min, y_min, x_max, y_max) = (300, 0, 500, 400) to get started
box = np.array([300, 0, 500, 400], dtype=np.float32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(inference_state=inference_state,frame_idx=ann_frame_idx,obj_id=ann_obj_id,box=box,
)# show the results on the current (interacted) frame
plt.figure(figsize=(9, 6))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_box(box, plt.gca())
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])

ann_frame_idx = 0  # the frame index we interact with
ann_obj_id = 4  # give a unique id to each object we interact with (it can be any integers)# Let's add a positive click at (x, y) = (460, 60) to refine the mask
points = np.array([[460, 60]], dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array([1], np.int32)
# note that we also need to send the original box input along with
# the new refinement click together into `add_new_points_or_box`
box = np.array([300, 0, 500, 400], dtype=np.float32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(inference_state=inference_state,frame_idx=ann_frame_idx,obj_id=ann_obj_id,points=points,labels=labels,box=box,
)# show the results on the current (interacted) frame
plt.figure(figsize=(9, 6))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_box(box, plt.gca())
show_points(points, labels, plt.gca())
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])

sam2图片分割

https://zhuanlan.zhihu.com/p/714031640

import torch
import numpy as np
import cv2
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictorfrom segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictorimport timeimport hydraNew_SAM = True# use bfloat16 for the entire notebook
if New_SAM:torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()# image = Image.open('/home/taohu/Projects/Data/RGB/thumbnail_Picture1.png')
# image = np.array(image.convert("RGB"))image = cv2.imread('/home/taohu/Projects/Data/RGB/thumbnail_Picture1.png')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)if New_SAM:method = "SAM2"
else:method = "SAM1"start_time1 = time.time()if New_SAM:sam2_checkpoint = "models/sam2_hiera_large.pt"model_cfg = "sam2_hiera_l.yaml"sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")predictor = SAM2ImagePredictor(sam2_model)predictor.set_image(image)
else:model_type = "vit_h"sam_checkpoint = "models/sam_vit_h_4b8939.pth" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)sam.to("cuda")predictor = SamPredictor(sam)predictor.set_image(image)end_time1 = time.time()
load_time = end_time1 - start_time1
print(f"Loading time ({method}): {load_time} seconds")input_box = np.array([58,107, 213,281])
input_point = np.array([[104, 163]])
input_label = np.array([1])start_time2 = time.time()masks, scores, logits = predictor.predict(point_coords=input_point,point_labels=input_label,box=input_box,multimask_output=False,
)end_time2 = time.time()
execution_time = end_time2 - start_time2
print(f"Execution time ({method}): {execution_time} seconds")mask_array = np.array(masks[0]) if New_SAM:mask_array = mask_array.astype(np.uint8)*255 # SAM2 use 0~1 values for the maskmask_image = Image.fromarray(mask_array)mask_image.save("sam2-bw.jpg")
else:mask_image = Image.fromarray(mask_array)mask_image.save("sam1-bw.jpg")

这篇关于sam2 安装使用笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124133

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca