sam2 安装使用笔记

2024-08-31 14:12
文章标签 安装 使用 笔记 sam2

本文主要是介绍sam2 安装使用笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

sam2 windows 安装

安装

cannot import name ‘_C‘ from ‘sam2‘解决

box测试;

sam2图片分割


sam2 windows 安装

SAM2 安装与运行问题解决方案_sam2部署-CSDN博客

安装

cannot import name ‘_C‘ from ‘sam2‘解决

http://t.csdnimg.cn/CEbKa

box测试;

ann_frame_idx = 0  # the frame index we interact with
ann_obj_id = 4  # give a unique id to each object we interact with (it can be any integers)# Let's add a box at (x_min, y_min, x_max, y_max) = (300, 0, 500, 400) to get started
box = np.array([300, 0, 500, 400], dtype=np.float32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(inference_state=inference_state,frame_idx=ann_frame_idx,obj_id=ann_obj_id,box=box,
)# show the results on the current (interacted) frame
plt.figure(figsize=(9, 6))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_box(box, plt.gca())
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])

ann_frame_idx = 0  # the frame index we interact with
ann_obj_id = 4  # give a unique id to each object we interact with (it can be any integers)# Let's add a positive click at (x, y) = (460, 60) to refine the mask
points = np.array([[460, 60]], dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array([1], np.int32)
# note that we also need to send the original box input along with
# the new refinement click together into `add_new_points_or_box`
box = np.array([300, 0, 500, 400], dtype=np.float32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(inference_state=inference_state,frame_idx=ann_frame_idx,obj_id=ann_obj_id,points=points,labels=labels,box=box,
)# show the results on the current (interacted) frame
plt.figure(figsize=(9, 6))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_box(box, plt.gca())
show_points(points, labels, plt.gca())
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])

sam2图片分割

https://zhuanlan.zhihu.com/p/714031640

import torch
import numpy as np
import cv2
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictorfrom segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictorimport timeimport hydraNew_SAM = True# use bfloat16 for the entire notebook
if New_SAM:torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()# image = Image.open('/home/taohu/Projects/Data/RGB/thumbnail_Picture1.png')
# image = np.array(image.convert("RGB"))image = cv2.imread('/home/taohu/Projects/Data/RGB/thumbnail_Picture1.png')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)if New_SAM:method = "SAM2"
else:method = "SAM1"start_time1 = time.time()if New_SAM:sam2_checkpoint = "models/sam2_hiera_large.pt"model_cfg = "sam2_hiera_l.yaml"sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")predictor = SAM2ImagePredictor(sam2_model)predictor.set_image(image)
else:model_type = "vit_h"sam_checkpoint = "models/sam_vit_h_4b8939.pth" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)sam.to("cuda")predictor = SamPredictor(sam)predictor.set_image(image)end_time1 = time.time()
load_time = end_time1 - start_time1
print(f"Loading time ({method}): {load_time} seconds")input_box = np.array([58,107, 213,281])
input_point = np.array([[104, 163]])
input_label = np.array([1])start_time2 = time.time()masks, scores, logits = predictor.predict(point_coords=input_point,point_labels=input_label,box=input_box,multimask_output=False,
)end_time2 = time.time()
execution_time = end_time2 - start_time2
print(f"Execution time ({method}): {execution_time} seconds")mask_array = np.array(masks[0]) if New_SAM:mask_array = mask_array.astype(np.uint8)*255 # SAM2 use 0~1 values for the maskmask_image = Image.fromarray(mask_array)mask_image.save("sam2-bw.jpg")
else:mask_image = Image.fromarray(mask_array)mask_image.save("sam1-bw.jpg")

这篇关于sam2 安装使用笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124133

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.