集成学习之GBDT、XGBOOST、RF

2024-08-31 11:38
文章标签 学习 集成 xgboost rf gbdt

本文主要是介绍集成学习之GBDT、XGBOOST、RF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GBDT&&XGBOOST

都属于GBM(GradientBoosting Machine)方法,传统GBDT以CART(分类回归树)作为基分类器,利用损失函数的负梯度方向在当前模型的值作为残差的近似值,可以说在RF的基础上又有进一步提升,能灵活的处理各种类型的数据,在相对较小的调参时间下,预测的准确度较高。

XGBOOST基学习器除了树,还支持线性分类器;XGBOOST在代价函数中加入了正则项,用于控制模型的复杂度,防止模型过拟合,当正则项系数为0时与传统的GBDT目标函数相同;XGBOOST支持并行计算(特征排序为block结构,可以运行在MPI和YARN上,自动调用CPU多线程进行并行计算),适合处理大数据;支持列抽样,防止过拟合,减少计算;XGBOOST有shrinkage(缩减)策略,相当于学习速率;XGBOOST用到了二阶导,GBDT只用到一阶导(联想梯度下降和牛顿法);XGBOOST增加了缺失值处理方案,自动学习分裂方向,GBDT的求解不断寻找分割点,将样本集进行分割,分配到分裂开的子节点上,选择依据是减少Loss,用于加速和减小内存消耗XGBOOS可以通过求函数极值点(求导)的方式获得最优解析解,GBDT用梯度下降法迭代求解XGBOOST实现利用了分块、预取、压缩、多线程协作的思想。


GBDT模型的参数:n_estimators:最大弱学习器的个数;learning_rate:弱学习器的权重缩减系数,步长;subsample:不放回子采样,(0,1];init:初始化时候的弱学习器;loss:GBDT模型的损失函数,分类有对数似然损失函数和指数损失函数两种选择,回归有均方差ls,绝对损失lad,huber损失,分位数损失等;alpha:做回归时才有的分位数值。max_features:划分时最大特征数;max_depth:决策树最大深度(10-100常用);min_samples_split:内部节点再划分所需最小样本数;min_samples_leaf:叶子节点最少样本数;min_weight_fraction_leaf:叶子节点最小的样本权重和;max_leaf_nides:最大叶子节点数;min_impurity_split:节点划分最小不纯度(默认1e-7)。

XGBOOST模型的参数:通用参数booster: gbtree和gblinear;silent:0/1,默认为0;nthread:默认为最大可能的线程数。

Booster参数:eta学习率,类似于learningrate,默认0.3;min_child_weight最小叶子节点样本权重和,用于避免过拟合,默认为1;max_depth:决策树的最大深度,用于避免过拟合,默认为6;max_leaf_nodes:树上最大的节点或叶子的数目;gamma:节点分裂所需最小损失函数下降值,默认为0;max_delta_step:每棵树权重改变的最大步长,默认为0;subsample:随机采样的比例,默认值为1;colsample_bytree:随机采样列数的占比,默认为1;colsample_bylevel:树的每一级分裂,列数采样的比例,默认为1;lambda:L2正则化项系数,默认为1;scale_pos_weight:样本类别不均衡时设置为正值可以加快算法的收敛,默认值为1。

学习目标参数:objective:损失函数类型,有binary二分类(logistic),multi多分类(softmax),默认linear;eval_metric:评价指标,有MSE,MAE,RMSE,ERROR,AUC等;seed:随机数的种子,可以复现随机数据的结果,默认为0。


RF

集成学习根据基学习器的生成方式,可分为两大类:即基学习器之间存在强依赖关系,必须串行生成的序列化方法;基学习器之间不存在强依赖关系,可同时生成的并行化方法,前者的代表是Boosting,后者的代表是Bagging和RF。

RF:Random Forest是Bagging的扩展变体,以决策树为基学习器,在决策树的训练过程中引入了随机特征选择,可概括为四部分:随机选择样本、随机选择特征(从样本集的特征集合中随机选择部分特征)、构建决策树、随机森林投票。RF每棵决策树都最大可能的进行生长而不剪枝,在对预测输出进行结合时,RF通常对分类问题使用简单投票法,回归问题使用简单平均法。RF和Bagging的对比:RF的起始性能较差,随着学习器数目增多,随机森林通常会收敛到更低的泛化误差,使用随机性选择的特征,训练效率高。噪声较大时容易产生过拟合

这篇关于集成学习之GBDT、XGBOOST、RF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123797

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

SpringBoot集成LiteFlow工作流引擎的完整指南

《SpringBoot集成LiteFlow工作流引擎的完整指南》LiteFlow作为一款国产轻量级规则引擎/流程引擎,以其零学习成本、高可扩展性和极致性能成为微服务架构下的理想选择,本文将详细讲解Sp... 目录一、LiteFlow核心优势二、SpringBoot集成实战三、高级特性应用1. 异步并行执行2

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项