Modern C++——无所有权指针的安全性保障

2024-08-31 05:28

本文主要是介绍Modern C++——无所有权指针的安全性保障,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  • C++98中的实现
  • Modern C++的实现
  • 总结

C++98中的实现

在C++98标准中,当涉及到多线程环境时,对共享资源的访问需要特别小心以避免数据竞争(data race)问题。数据竞争是指两个或多个线程同时访问同一内存位置,且至少有一个线程正在修改该内存位置,同时又没有适当的同步机制(如互斥锁、信号量等)来协调这些访问的情况。

在C++98中,标准库本身并不直接支持多线程编程(尽管许多编译器和平台提供了扩展支持),但是理解和遵循多线程编程的最佳实践仍然是非常重要的。对于指针来说,当我们在多线程环境中释放了一个指针所指向的内存后,如果之后不将该指针设置为NULL(或现代C++中的nullptr,但C++98标准中尚未引入nullptr),并且没有适当的同步机制来保护这个指针的访问,就可能发生数据竞争。

这里是一个简化的例子来说明这个问题:

假设有两个线程,线程A和线程B,它们共享一个指针ptr

// 假设这是全局或共享的指针
int* ptr = new int(10);
// 线程A的函数
void threadAFunc() {// 假设这里线程A执行了一些操作,然后释放了ptr指向的内存delete ptr;ptr = NULL; 
}
// 线程B的函数
void threadBFunc() {// 线程B尝试访问ptr指向的内存if (ptr != NULL) { // 这里的检查在ptr已经被释放且未设为NULL时是无用的// 假设此时ptr被设置为NULL了,后续使用就会出错int* temp = ptr;int value = *temp; // 尝试解引用悬空指针,导致未定义行为}
}

因为是多线程执行,又没有使用同步机制,导致各个线程的执行流程不能保证。

当发生如下执行顺序时,上述代码就会发生Data Race问题:

  1. threadAFunc的delete ptr
  2. threadBFunc的 if (ptr != NULL)。测试该指针所指空间已经为threadAFunc释放,但是ptr = NULL还没来的及执行。
  3. threadAFunc的ptr = NULL。(这一步可能有可无,因为指针已经释放,后续threadBFunc执行一定会出错)
  4. threadBFunc的int* temp = ptr;int value = *temp;

所以上述代码的问题是delete ptr;ptr = NULL;这两步如何“原子化”。我们可以通过锁的方式来实现

// 假设这是全局或共享的指针
int* ptr = new int(10);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;// 线程A的函数
void* threadAFunc(void* arg) {pthread_mutex_lock(&mutex);// 假设这里线程A执行了一些操作,然后释放了ptr指向的内存delete ptr;ptr = NULL;pthread_mutex_unlock(&mutex);return NULL;
}// 线程B的函数
void* threadBFunc(void* arg) {pthread_mutex_lock(&mutex);// 线程B尝试访问ptr指向的内存if (ptr != NULL) {int* temp = ptr;int value = *temp; // 尝试解引用悬空指针,导致未定义行为std::cout << "Value: " << value << std::endl;}pthread_mutex_unlock(&mutex);return NULL;
}

Modern C++的实现

上述代码看起来很有C的风格。而且从形式上,ptr 和mutex 是强绑定的。这种设计非常容易因为使用不当导致问题出现(比如某次使用ptr忘记使用mutex来保护)。

Modern C++则引入了shared_ptr和weak_ptr来解决这个问题。

我们在《Modern C++——共享所有权指针保证内部对象析构安全的原因分析》中分析了在多线程下,shared_ptr释放内部对象需要依赖编译器的构造和析构排布来保证安全。但是有些场景下,我们需要让对象提前失效(如上述代码),而不是依赖对象的析构。这个时候weak_ptr就派上用场了。

void threadAFunc(std::shared_ptr<Data>& data) {std::this_thread::sleep_for(std::chrono::seconds(1)); // 模拟一些延迟data.reset(); // 销毁数据(实际不一定在此销毁)std::cout << "Data has been reset\n";
}void threadBFunc(std::weak_ptr<Data> weakData) {std::this_thread::sleep_for(std::chrono::seconds(2)); // 模拟一些延迟if (auto data = weakData.lock()) {data->process();} else {std::cout << "Data no longer exists\n";}
}int main() {std::shared_ptr<Data> data = std::make_shared<Data>();std::weak_ptr<Data> weakData = data;std::thread threadA(threadAFunc, std::ref(data));std::thread threadB(threadBFunc, weakData);threadA.join();threadB.join();return 0;
}

threadAFunc使用shared_ptr的引用,所以并不会增加它的引用计数。这样在threadAFunc中,reset操作会释放其内部管理的对象。(实际并不一定是在threadAFunc中释放的。后续会对此进行分析。)

threadBFunc中,如果weak_ptr管理的对象指针没有被释放,则lock操作会获得一个shared_ptr;否则将返回一个空指针。

现在的问题是if (auto data = weakData.lock())data->process();之间,threadAFunc会不会进行释放操作。

  1. threadBFunc的if (auto data = weakData.lock())
  2. threadAFunc的data.reset()
  3. threadBFunc的data->process()

这个问题的答案是:上述流程完全正常,且不会出现多线程安全问题。因为threadAFunc虽然执行了reset,但是并没有释放管理的对象。

这是因为weak_ptr和shared_ptr在底层共享了一个计数器指针。而weak_ptr的lock操作实际没有做任何锁的操作,而是返回了一个shared_ptr的副本。

      shared_ptr<_Tp>lock() const noexcept{ return shared_ptr<_Tp>(*this, std::nothrow); }};

这个副本的生成会导致weak_ptr和shared_ptr在底层共享的计数器原子递增。这样即使后续shared_ptr::reset被调用,实际它只是将计数器减少到1,而没有减少到0,于是reset操作并不会真正释放对象。

	  if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, -1) == 1) // 前值不是1,所以不会进入[[__unlikely__]]{_M_release_last_use_cold();return;}

总结

  • weak_ptr::lock没有任何原子操作,只是会生成一个shared_ptr副本。
  • 因为shared_ptr副本的生成,导致其引用计数原子递增,从而保证在使用该副本期间,它所管理的对象不会被释放。

这篇关于Modern C++——无所有权指针的安全性保障的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123015

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域