INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】

本文主要是介绍INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.背景

2022年,I Ahmadianfar受到基于向量加权平均方法启发,提出了加权平均向量优化算法(weIghted meaN oF vectOrs, INFO)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

INFO 是一种修改过的加权平均方法,采用加权平均的思想来构建稳固的结构,并通过三个核心程序更新向量的位置:更新规则、向量组合和局部搜索。更新规则阶段基于基于平均的法则和加速收敛生成新向量,向量组合阶段结合获得的向量和更新规则以达到有希望的解决方案,局部搜索阶段帮助该算法逃离低精度的解决方案,并提高利用率和收敛性。

在这里插入图片描述

2.2算法过程

更新规则阶段

在INFO算法中,更新规则算子增加了种群在搜索过程中的多样性。这个算子使用向量的加权平均值来创建新的向量。基于平均的规则被应用于MeanRule:
M e a n R u l e = r × W M 1 l g + ( 1 − r ) × W M 2 l g (1) MeanRule=r\times WM1_l^g+(1-r)\times WM2_l^g\tag{1} MeanRule=r×WM1lg+(1r)×WM2lg(1)
其中各参数为:
W M 1 i g = δ × w 1 ( x a 1 − x a 2 ) + w 2 ( x a 1 − x a 3 ) + w 3 ( x a 2 − x a 3 ) w 1 + w 2 + w 3 + ε + ε × r a n d (2) WM 1_{i}^{g}=\delta\times\frac{w_{_1}(x_{_{a1}}-x_{_{a2}})+w_{_2}(x_{_{a1}}-x_{_{a3}})+w_{_3}(x_{_{a2}}-x_{_{a3}})}{w_{_1}+w_{_2}+w_{_3}+\varepsilon}+\varepsilon\times rand\tag{2} WM1ig=δ×w1+w2+w3+εw1(xa1xa2)+w2(xa1xa3)+w3(xa2xa3)+ε×rand(2)

W M 2 l g = δ × w 1 ( x b s − x b t ) + w 2 ( x b s − x w s ) + w 3 ( x b t − x w s ) w 1 + w 2 + w 3 + ε + ε × r a n d (3) WM 2_{l}^{g} = \delta\times\frac{w_{ 1}(x_{ bs} - x_{ bt} )+w_{ 2}(x_{ bs} - x_{ ws} )+w_{ 3}(x_{ bt} - x_{ ws} )}{w_{ 1} + w_{ 2} + w_{ 3} + \varepsilon}+\varepsilon\times rand\tag{3} WM2lg=δ×w1+w2+w3+εw1(xbsxbt)+w2(xbsxws)+w3(xbtxws)+ε×rand(3)
根据小波理论,WFs(波形函数)被用来根据两个原因调整MeanRule空间:(1)通过在优化过程中创建有效的振荡,帮助算法更有效地探索搜索空间并实现更好的解决方案;(2)通过控制引入WFs的扩张参数来生成微调,该参数用于调整WF的振幅。其中,δ是缩放因子,而β可以基于定义的指数函数进行变化:
δ = 2 β × r a n d − β β = 2 exp ⁡ ( − 4 × g M a x g ) (4) \begin{aligned}&\delta=2\beta\times rand-\beta\\&\beta=2\exp(-4\times\frac{g}{Maxg})\end{aligned}\tag{4} δ=2β×randββ=2exp(4×Maxgg)(4)
在更新规则操作中,还增加了收敛加速部分(CA),使用最佳向量在搜索空间中移动当前向量以提升全局搜索能力。在INFO算法中,假设最佳解决方案是最接近全局最优的解决方案。实际上,CA帮助向量朝更好的方向移动:
C A = r a n d n × ( x b s − x a 1 ) ( f ( x b s ) − f ( x a 1 ) + ε ) (5) CA=randn\times\frac{\left(x_{bs}-x_{a1}\right)}{\left(f\left(x_{bs}\right)-f\left(x_{a1}\right)+\varepsilon\right)}\tag{5} CA=randn×(f(xbs)f(xa1)+ε)(xbsxa1)(5)
计算新向量:
z l g = x l g + σ × M e a n R u l e + C A (6) z_{ l}^{ g}=x_{ l}^{ g}+\sigma\times MeanRule+CA\tag{6} zlg=xlg+σ×MeanRule+CA(6)

以rand<0.5进行切换:
在这里插入图片描述
α 可以根据方程中定义的指数函数进行改变:
σ = 2 α × r a n d − α α = c exp ⁡ ( − d × g M a x g ) (7) \begin{aligned}&\sigma=2\alpha\times rand-\alpha\\&\alpha=c\exp(-d\times\frac{g}{Maxg})\end{aligned}\tag{7} σ=2α×randαα=cexp(d×Maxgg)(7)

矢量组合阶段

为了增强INFO中种群的多样性,生成新向量:
在这里插入图片描述

局部搜索阶段

有效的局部搜索能力可以防止INFO算法被欺骗和陷入局部最优解,以进一步促进开发、搜索和收敛到全局最优解:
在这里插入图片描述
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Ahmadianfar I, Heidari A A, Noshadian S, et al. INFO: An efficient optimization algorithm based on weighted mean of vectors[J]. Expert Systems with Applications, 2022, 195: 116516.

5.代码获取

这篇关于INFO:一种基于向量加权平均的高效优化算法【免费获取Matlab代码】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122815

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS